
2024/03/19 19:24 (UTC) 1/5 Package Management

SlackDocs - https://docs.slackware.com/

Package Management

Package management is an essential part of any Linux distribution. Every piece of software included
by Slackware, along with many third-party tools are distributed as source code that can be compiled,
but compiling all those thousands of different applications and libraries is tedious and time
consuming. That's why many people prefer to install pre-compiled software packages. In fact, when
you installed Slackware, the setup program primarily worked by running package management tools
on a list of packages. Here we'll look at the various tools used for handling Slackware packages.

pkgtool

The simplest way to perform package maintenance tasks is to invoke pkgtool(8), a menu-driven
interface to some of the other tools. pkgtool allows you to install or remove packages as well as view
the contents of those packages and the list of currently installed packages in a user-friendly ncurses
interface.

pkgtool is a convenient and easy way to perform the most basic tasks, but for more advanced work
more flexible tools are needed.

Installing, Removing, and Upgrading Packages

While pkgtool scores points for convenience, installpkg(8) is much more capable of handling odd
tasks, such as quickly installing a single package, installing an entire disk set of packages, or scripting
an install. installpkg takes a list of packages to install, and simply installs them without asking any
questions. Like all Slackware package management tools, it assumes that you know what you're doing
and doesn't pretend to be smarter than you. In its simplest form, installpkg simply takes a list of
packages to install, and does exactly what you would expect.

darkstar:~# installpkg blackbox-0.70.1-i486-2.txz
Verifying package blackbox-0.70.1-i486-2.txz.

Last update: 2012/09/17 03:12 (UTC) slackbook:package_management https://docs.slackware.com/slackbook:package_management

https://docs.slackware.com/ Printed on 2024/03/19 19:24 (UTC)

Installing package blackbox-0.70.1-i486-2.txz:
PACKAGE DESCRIPTION:
blackbox (Blackbox window manager)
#
Blackbox is that fast, light window manager you have been looking for
without all those annoying library dependencies.
#
Also included in this package is the bbkeys utility for controlling
keyboard shortcut commands from within Blackbox.
#
The Blackbox home page is http://blackboxwm.sourceforge.net
#
Package blackbox-0.70.1-i486-2.txz installed.

You can of course install multiple packages at a time, and in fact use shell wild cards.The following
installs all of the “N” series packages from a mounted CD-ROM:

darkstar:~# installpkg /mnt/cdrom/slackware/n/*.txz

At any given time, you can see what packages are installed on your system by listing the contents of
/var/log/packages, which lists not only every application on your system but also the version number.
Should you want to know what individual files were installed as a part of that package, cat the
contents of the package:

darkstar:~#cat /var/log/packages/foo-1.0-x86_64.txz

This will return everything from the size of the package, a description of what it does, and the name
and location of every file installed as a part of the package.

Removing a package is every bit as easy as installing one. As you might expect, the command to do
this is removepkg(8). Simply tell it which packages to remove, and removepkg will check the
contents of the package database and remove all the files and directories for that package with one
caveat. If that file is included in multiple installed packages, it will be skipped and if a directory has
new files in it, the directory will be left in place. Because of this, removing packages takes a good
while longer than installing them.

darkstar:~# removepkg blackbox-0.70.1-i486-2.txz

Finally, upgrading is just as easy with (you guessed it), upgradepkg(8) which first installs a new
package, then removes whatever files and directories are left-over from the old package. One
important thing to remember is that upgradepkg doesn't check to see if the previously installed
package has a higher version number than the “new” package, so it can also be used to downgrade
to older versions.

darkstar:~# upgradepkg blackbox-0.70.1-i486-2.txz

+===
===
| Upgrading blackbox-0.65.0-x86_64-4 package using
./blackbox-0.70.1-i486-2.txz

2024/03/19 19:24 (UTC) 3/5 Package Management

SlackDocs - https://docs.slackware.com/

+===
===

Pre-installing package blackbox-0.70.1-i486-2...

Removing package
/var/log/packages/blackbox-0.65.0-x86_64-4-upgraded-2010-02-23,16:50:51...
--> Deleting symlink /usr/share/blackbox/nls/POSIX
--> Deleting symlink /usr/share/blackbox/nls/US_ASCII
--> Deleting symlink /usr/share/blackbox/nls/de
--> Deleting symlink /usr/share/blackbox/nls/en
--> Deleting symlink /usr/share/blackbox/nls/en_GB
...
Package blackbox-0.65.0-x86_64-4 upgraded with new package
./blackbox-0.70.1-i486-2.txz.

All of these tools have useful arguments. For example, the –root to installpkg will install packages
into an arbitrary directory. The –dry-run argument will instruct upgradepkg to simply tell you what it
would attempt without actually making any changes to the system. For complete details, you should
(as always) refer to the man pages.

Package Compression Formats

In the past, all Slackware packages were compressed with the gzip(1) compression utility, which was
a good compromise between compression speed and size.Recently, new compression schemes have
been added and the package management tools have been upgraded to handle these. Today, official
Slackware packages are compressed with the xz utility and end with .txz extensions.Older packages
(and many third party packages) still use the .tgz extension.

It's worth emphasizing that .tgz and .txz (or, more succinctly, .t?z files) are very standard, non-unique
extensions for compressed .tar files. This has many advantages; they're easy to build on nearly any
UNIX system (many other package formats require special toolchains), and they're just as simple to
de-construct.

However, it is also important to realize that just because all Slackware packages are .t?z files, not all
.t?z files are Slackware packages. Installpkg won't magically install just any .t?z file, only Slackware
packages.

slackpkg

Slackpkg is an automated tool for management of Slackware Linux Packages. It originally appeared
in /extra for the release of slackware-12.1, and since the release of slackware-12.2 it has been
included in the ap/ series of a base installation.

Just as you are able to use installpkg to install Slackware packages from the /extra directory
included on the install media, you can use slackpkg to pull packages from the Internet and install
them. This is particularly useful for security updates or significant application upgrades that are
posted to the Slackware servers, some of which you may want to start using on your own system.

Last update: 2012/09/17 03:12 (UTC) slackbook:package_management https://docs.slackware.com/slackbook:package_management

https://docs.slackware.com/ Printed on 2024/03/19 19:24 (UTC)

Without slackpkg, the process would be:

Notice in the Slackware changelog that an update has been released.1.
Look on your local Slackware mirror to find a download link of the package.2.
Download the package from a Slackware mirror to your hard drive.3.
Use either installpkg or pkgtool to install the downloaded package.4.

With slackpkg, this is reduced to:

Notice in the Slackware changelog that an update for foo has been released.1.
slackpkg install foo2.

Clearly, this streamlines a fairly common task.

To use slackpkg, configure your system with a Slackware mirror by editing
/etc/slackpkg/mirrors as root. Find the mirror that is associated with your Slackware version
and architecture, and uncomment it. This list of mirrors offers ftp and http access, but you must
uncomment only one mirror.

Once a mirror has been selected, update the list of remote files by issuing the initial command
slackpkg update. This should be done any time you notice that a new package has been posted
(regularly checking in with the Slackware changelog is recommended; see Chapter 18, Keeping Track
of Updates for more information).

To search for a package, use slackpkg search foo, and to install use slackpkg install foo.

Once a package has been installed with slackpkg, it can be removed or upgraded using pkgtool and
the other package management commands as detailed inInstalling, Removing, and Upgrading
Packages.

For more information see the man pages for slackpkg(8) and slackpkg.conf(5), and see its website at
http://www.slackpkg.org/

rpm2tgz

One of the most ubiquitous package formats for Linux software is RPM; it's not uncommon to find a
developer offering their application for download as either source code or an RPM file, and no more. In
this case, you would have three options:

Build your own Slackware package.1.
Compile and install directly from source code.2.
Convert and install from RPM.3.

Building from source code or creating your own Slackware package is usually not as complex as you
might think but installing directly from source code is generally discouraged because there is no easy
way to track what has been installed on your system after issuing the make install command.
Building your own Slackware packages is outside the scope of this chapter. So this leaves us with the
helpful tool rpm2tgz.

rpm2tgz converts RPM packages into a Slackware package that can then be installed via pkgtool or
installpkg. This circumvents the need to create your own Slackware package but grants you the
benefit of being able to remove, update, and track what you've installed.

https://docs.slackware.com/slackbook:tracking_updates
https://docs.slackware.com/slackbook:tracking_updates
http://www.slackpkg.org/

2024/03/19 19:24 (UTC) 5/5 Package Management

SlackDocs - https://docs.slackware.com/

While a Slackware package is just a shell script and source code, an RPM package can
by comparison be a maze of dependency listings and special instructions. Therefore,
rpm2tgz will not always work, especially on very complex applications, and it will
never magically resolve dependencies.

To try rpm2tgz, download an RPM file from a trusted source and convert it:

rpm2tgz foo-x.x.xx.rpm

The result is a .tgz file, so after the conversion is finished, the original RPM can safely be discarded.
Use installpkg to install the Slackware package you've just created, provided that you've installed all
dependency code for the application to actually function.

Chapter Navigation

Previous Chapter: Basic Networking Utilities

Next Chapter: Keeping Track of Updates

Sources

Original source: http://www.slackbook.org/beta

Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook, package management, pkgtool, slackpkg, rpm2tgz

From:
https://docs.slackware.com/ - SlackDocs

Permanent link:
https://docs.slackware.com/slackbook:package_management

Last update: 2012/09/17 03:12 (UTC)

https://docs.slackware.com/slackbook:basic_networking_utilities
https://docs.slackware.com/slackbook:tracking_updates
http://www.slackbook.org/beta
https://docs.slackware.com/tag:slackbook?do=showtag&tag=slackbook
https://docs.slackware.com/tag:package_management?do=showtag&tag=package_management
https://docs.slackware.com/tag:pkgtool?do=showtag&tag=pkgtool
https://docs.slackware.com/tag:slackpkg?do=showtag&tag=slackpkg
https://docs.slackware.com/tag:rpm2tgz?do=showtag&tag=rpm2tgz
https://docs.slackware.com/
https://docs.slackware.com/slackbook:package_management

	Package Management
	pkgtool
	Installing, Removing, and Upgrading Packages
	Package Compression Formats
	slackpkg
	rpm2tgz

	Chapter Navigation
	Sources

