
2019/01/16 18:06 (UTC) 1/7 The Bourne Again Shell

SlackDocs - https://docs.slackware.com/

The Bourne Again Shell

What Is A Shell?

Yeah, what exactly is a shell? Well, a shell is basically a command-line user environment. In essence,
it is an application that runs when the user logs in and allows him to run additional applications. In
some ways it is very similar to a graphical user interface, in that it provides a framework for executing
commands and launching programs. There are many shells included with a full install of Slackware,
but in this book we're only going to discuss bash(1), the Bourne Again Shell. Advanced users might
want to consider using the powerful zsh(1), and users familiar with older UNIX systems might
appreciate ksh. The truly masochistic might choose the csh, but new users should stick to bash.

Environment Variables

All shells make certain tasks easier for the user by keeping track of things in environment variables.
An environment variable is simply a shorter name for some bit of information that the user wishes to
store and make use of later. For example, the environment variable PS1 tells bash how to format its
prompt. Other variables may tell applications how to run. For example, the LESSOPEN variable tells
less to run that handy lesspipe.sh preprocessor we talked about, and LS_OPTIONS tuns on color
for ls.

Setting your own envirtonment variables is easy. bash includes two built-in functions for handling
this: set and export. Additionally, an environment variable can be removed by using unset. (Don't
panic if you accidently unset an environment variable and don't know what it would do. You can reset
all the default variables by logging out of your terminal and logging back in.) You can reference a
variable by placing a dollar sign ($) in front of it.

darkstar:~$ set FOO=bar
darkstar:~$ echo $FOO
bar

The primary difference between set and export is that export will (naturally) export the variable to
any sub-shells. (A sub-shell is simply another shell running inside a parent shell.) You can easily see
this behavior when working with the PS1 variable that controls the bash prompt.

darkstar:~$ set PS1='FOO '
darkstar:~$ export PS1='FOO '
FOO

There are many important environment variables that bash and other shells use, but one of the most
important ones you will run across is PATH. PATH is simply a list of directories to search through for
applications. For example, top(1) is located at /usr/bin/top. You could run it simply by specifying the
complete path to it, but if /usr/bin is in your PATH variable, bash will check there if you don't
specify a complete path one your own. You will most likely first notice this when you attempt to run a
program that is not in your PATH as a normal user, for instance, ifconfig(8).

Last update: 2012/10/14 15:52 (UTC) slackbook:bash https://docs.slackware.com/slackbook:bash

https://docs.slackware.com/ Printed on 2019/01/16 18:06 (UTC)

darkstar:~$ ifconfig
bash: ifconfig: command not found
darkstar:~$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:/usr/games:/opt/www/htdig/bin:.

Above, you see a typical PATH for a mortal user. You can change it on your own the same as any
other environment variable. If you login as root however, you'll see that root has a different PATH.

darkstar:~$ su -
Password:
darkstar:~# echo $PATH
/usr/local/sbin:/usr/sbin:/sbin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:
/usr/games:/opt/www/htdig/bin

Wildcards

Wildcards are special characters that tell the shell to match certain criteria. If you have experience
with DOS, you'll recognize * as a wildcard that matches anything. bash makes use of this wildcard
and several others to enable you to easily define exactly what you want to do.

This first and most common of these is, of course, *. The asterisk matches any character or
combination of characters, including none. Thus b* would match any files named b, ba, bab, babc,
bcdb, and so forth. Slightly less common is the ?. This wildcard matches one instance of any
character, so b? would match ba and bb, but not b or bab.

darkstar:~$ touch b ba bab
darkstar:~$ ls *
b ba bab
darkstar:~$ ls b?
ba

No, the fun doesn't stop there! In addition to these two we also have the bracket pair “[]” which
allows us to fine tune exactly what we want to match. Whenever bash see the bracket pair, it
substitutes the contents of the bracket. Any combination of letters or numbers may be specified in the
bracket as long as they are comma seperated. Additionally, ranges of numbers and letters may be
specified as well. This is probably best shown by example.

darkstar:~$ ls a[1-4,9]
a1 a2 a3 a4 a9

Since Linux is case-sensitive, capital and lower-case letters are treated differently. All capital letters
come before all lower-case letters in “alphabetical” order, so when using ranges of capital and lower-
case letters, make sure to get them right.

darkstar:~$ ls 1[W-b]
1W 1X 1Y 1Z 1a 1b
darkstar:~$ ls 1[w-B]
/bin/ls: cannot access 1[b-W]: No such file or directory

2019/01/16 18:06 (UTC) 3/7 The Bourne Again Shell

SlackDocs - https://docs.slackware.com/

In the second example, 1[b-W] isn't a valid range, so the shell treats it as a filename, and since that
file doesn't exist, ls tells you so.

Tab Completion

Still think there's entirely too much work involved with using wildcards? You're right. There's an even
easier way when you're dealing with long filenames: tab completion. Tab completion enables you to
type just enough of the filename to uniquely identify it, then by hitting the TAB key, bash will fill in
the rest for you. Even if you haven't typed in enough text to uniquely identify a filename, the shell will
fill in as much as it can for you. Hitting TAB a second time will make it display a list of all possible
matches for you.

Input and Output Redirection

One of the defining features of Linux and other UNIX-like operating systems is the number of small,
relatively simple applications and the ability to stack them together to create complex systems. This
is achieved by redirecting the output of one program to another, or by drawing input from a file or
second program.

To get started, we're going to show you how to redirect the output of a program to a file. This is easily
done with the '>' character. When bash sees the '>' character, it redirects all of the standard output
(also known as stdout) to whatever file name follows.

darkstar:~$ echo foo
foo
darkstar:~$ echo foo > /tmp/bar
darkstar:~$ cat /tmp/bar
foo

In this example, we show you what echo would do if its stdout was not redirected to a file, then we
re-direct it to the /tmp/bar file. If /tmp/bar does not exist, it is created and the output from echo is
placed within it. If /tmp/bar did exist, then its contents are over-written. This might not be the best
idea if you want to keep those contents in place. Thankfully, bash supports '»' which will append the
output to the file.

darkstar:~$ echo foo
foo
darkstar:~$ echo foo > /tmp/bar
darkstar:~$ cat /tmp/bar
foo
darkstar:~$ echo foo2 >> /tmp/bar
darkstar:~$ cat /tmp/bar
foo
foo2

You can also re-direct the standard error (or stderr) to a file. This is slightly different in that you must
use '2>' instead of just '>'. (Since bash can re-direct input, stdout, and stderr, each must be uniquely

Last update: 2012/10/14 15:52 (UTC) slackbook:bash https://docs.slackware.com/slackbook:bash

https://docs.slackware.com/ Printed on 2019/01/16 18:06 (UTC)

identifiable. 0 is input, 1 is stdout, and 2 is stderr. Unless one of these is specified, bash will make its
best guess as to what you actually meant, and assumed anytime you use '>' you only want to redirect
stdout. 1> would have worked just as well.)

darkstar:~$ rm bar
rm: cannot remove `bar': No such file or directory
darkstar:~$ rm bar 2> /tmp/foo
darkstar:~$ cat /tmp/foo
rm: cannot remove `bar': No such file or directory

You may also redirect the standard input (known as stdin) with the '<' character, though it's not used
very often.

darkstar:~$ fromdos < dosfile

Finally, you can actually redirect the output of one program as input to another. This is perhaps the
most useful feature of bash and other shells, and is accomplished using the '|' character. (This
character is referred to as 'pipe'. If you here some one talk of piping one program to another, this is
exactly what they mean.)

darkstar:~$ ps auxw | grep getty
root 2632 0.0 0.0 1656 532 tty2 Ss+ Feb21 0:00
/sbin/agetty 38400 tty2 linux
root 3199 0.0 0.0 1656 528 tty3 Ss+ Feb15 0:00
/sbin/agetty 38400 tty3 linux
root 3200 0.0 0.0 1656 532 tty4 Ss+ Feb15 0:00
/sbin/agetty 38400 tty4 linux
root 3201 0.0 0.0 1656 532 tty5 Ss+ Feb15 0:00
/sbin/agetty 38400 tty5 linux
root 3202 0.0 0.0 1660 536 tty6 Ss+ Feb15 0:00
/sbin/agetty 38400 tty6 linux

Task Management

bash has yet another cool feature to offer, the ability to suspend and resume tasks. This allows you to
temporarily halt a running process, perform some other task, then resume it or optionally make it run
in the background. Upon pressing CTRL+z , bash will suspend the running process and return you to
a prompt. You can return to that process later. Additionally, you can suspend multiple processes in
this way indefinitely. The jobs built-in command will display a list of suspended tasks.

darkstar:~$ jobs
[1]- Stopped vi TODO
[2]+ Stopped vi chapter_05.xml

In order to return to a suspended task, run the fg built-in to bring the the most recently suspended
task back into the foreground. If you have mutiple suspended tasks, you can specify a number as well
to bring one of them to the foreground.

darkstar:~$ fg # "vi TODO"

2019/01/16 18:06 (UTC) 5/7 The Bourne Again Shell

SlackDocs - https://docs.slackware.com/

darkstar:~$ fg 1 # "vi chapter_05.xml"

You can also background a task with (surprize) bg. This will allow the process to continue running
without maintaining control of your shell. You can bring it back to the foreground with fg in the same
way as suspended tasks.

Terminals

Slackware Linux and other UNIX-like operating systems allow users to interact with them in many
ways, but the most common, and arguably the most useful, is the terminal. In the old days, terminals
were keyboards and monitors (sometimes even mice) wired into a mainframe or server via serial
connections. Today however, most terminals are virtual; that is, they exist only in software. Virtual
terminals allow users to connect to the computer without requiring expensive and often incompatible
hardware. Rather, a user needs only to run the software and they are presented with a (usually)
highly customizable virtual terminal.

The most common virtual terminals (in that every Slackware Linux machine is going to have at least
one) are the gettys. agetty(8) runs six instances by default on Slackware, and allows local users
(those who can physically sit down in front of the computer and type at the keyboard) to login and run
applications. Each of these gettys is available on different tty devices that are accessible seperately
by pressing the ALT key and one of the function keys from F1 through F6 . Using these gettys allows
you to login multiple times, perhaps as different users, and run applications in those users' shells
silmutaneously. This is most commonly done with servers which do not have X installed, but can be
done on any machine.

On desktops, laptops, and other workstations where the user prefers a graphical interface provided by
X, most terminals are graphical. Slackware includes many different graphical terminals, but the most
commonly used are KDE's konsole and XFCE's Terminal(1) as well as the old standby, xterm(1). If
you are using a graphical interface, check your tool bars or menus. Each desktop environment or
window manager has a virtual terminal (often called a terminal emulater), and they are all labelled
differently. Typically though, you will find them under a “System” sub-menu in desktop environments.
Executing any of these will give you a graphical terminal and automatically run your default shell.

Customization

By now you should be pretty familiar with bash and you may have even noticed some odd behavior.
For example, when you login at the console, you're presented with a prompt that looks a bit like this.

alan@darkstar:~$

However, sometimes you'll see a much less helpful prompt like this one.

bash-3.1$

The cause here is a special environment variable that controls the bash prompt. Some shells are
considered “login” shells and others are “interactive” shells, and both types read different
configuration files when started. Login shells read /etc/profile and ~/.bash_profile when

Last update: 2012/10/14 15:52 (UTC) slackbook:bash https://docs.slackware.com/slackbook:bash

https://docs.slackware.com/ Printed on 2019/01/16 18:06 (UTC)

executed. Interactive shells read ~/.bashrc instead. This has some advantages for power users, but
is a common annoyance for many new users who want the same environment anytime they execute
bash and don't care about the difference between login and interactive shells. If this applies to you,
simply edit your own ~/.bashrc file and include the following lines. (For more information on the
different configuration files used, read the INVOCATION section of the bash man page.)

~/.bashrc
. /etc/profile
. ~/.bash_profile

When using the above, all your login and interactive shells will have the same environment settings
and behave identically. Now, anytime we wish to customize a shell setting, we only have to edit
~/.bash_profile for user-specific changes and /etc/profile for global settings. Let's start by
configuring the prompt.

bash prompts come in all shapes, colors, and sizes, and every user has their own preferances.
Personally, I prefer short and simple prompts that take up a minimum of space, but I've seen and
used mutli-line prompts many times. One personal friend of mine even included ASCII-art in his bash
prompt. To change your prompt you need only to change your PS1 variable. By default, Slackware
attempts to configure your PS1 variable thusly:

darkstar:~$ echo $PS1
\u@\h:\w\$

Yes, this tiny piece of funny-looking figures controls your bash prompt. Basicaly, every character in
the PS1 variable is included in the prompt, unless it is a escaped by a \ , which tells bash to interpret
it. There are many different escape sequences and we can't discuss them all, but I'll explain these.
The first “\u” translates to the username of the current user. “\h” is the hostname of the machine the
terminal is attached to. “\w” is the current working directory, and “\$” displays either a # or a $ sign,
depending on whether or not the current user is root. A complete listing of all prompt escape
sequences is listed in the bash man page under the PROMPTING section.

Since we've gone through all this trouble to discuss the default prompt, I thought I'd take some time
to show you a couple example prompts and the PS1 variable values needed to use them.

Wed Jan 14 12:08 AM
alan@raven:~$ echo $PS1
\d \@\n\u@\h:\w$
HOST: raven - JOBS: 0 - TTY: 3
alan@~/Desktop/sb_3.0:$ echo $PS1
HOST: \H - JOBS: \j - TTY: \l\n\u@\w:\$

For even more information on configuring your bash prompt, including information on setting up
colored prompts, refer to /usr/doc/Linux-HOWTOs/Bash-Prompt-HOWTO. After reading that for a
short while, you'll get an idea of just how powerful your bash prompts can be. I once even had a
prompt that gave me up to date weather information such as temperature and barometric pressure!

2019/01/16 18:06 (UTC) 7/7 The Bourne Again Shell

SlackDocs - https://docs.slackware.com/

Chapter Navigation

Previous Chapter: Basic Shell Commands

Next Chapter: Process Control

Sources

Original source: http://www.slackbook.org/beta

Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook, bash, task management, terminals

From:
https://docs.slackware.com/ - SlackDocs

Permanent link:
https://docs.slackware.com/slackbook:bash

Last update: 2012/10/14 15:52 (UTC)

https://docs.slackware.com/slackbook:shell
https://docs.slackware.com/slackbook:process_control
http://www.slackbook.org/beta
https://docs.slackware.com/tag:slackbook?do=showtag&tag=slackbook
https://docs.slackware.com/tag:bash?do=showtag&tag=bash
https://docs.slackware.com/tag:task_management?do=showtag&tag=task_management
https://docs.slackware.com/tag:terminals?do=showtag&tag=terminals
https://docs.slackware.com/
https://docs.slackware.com/slackbook:bash

	The Bourne Again Shell
	What Is A Shell?
	Environment Variables
	Wildcards
	Tab Completion
	Input and Output Redirection
	Task Management
	Terminals
	Customization

	Chapter Navigation
	Sources

