
2021/06/06 23:21 (UTC) 1/9 Shells

SlackDocs - https://docs.slackware.com/

Work in progress

Shells

A shell (also called a command line interpreter) is a program that provides a command line interface,
a bridge between a user and the operating system. When a user logs in, the shell specified in the
user's profile loads up and greets the user with a welcoming command prompt. The default shell in
Slackware is [[http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29|Bash (Bourne-again shell)]]. Other
popular shells that Slackware ships with include:

Korn Shell (ksh)
C Shell (tcsh)
Z Shell (zsh)

Although we are going to focus exclusively on bash, one can switch and try out other shells:

root@darkstar:~# chsh -s /bin/zsh fred

This will change the login shell to zsh for the user fred. If we do not want to modify a user's default
shell, we can just start a given shell by typing:

user@darkstar:~$ zsh

To learn more about those shells please see this [[howtos:cli_manual:shell_comparison|article]].

Bash and its Startup Files

Being released in 1989, Bash predates Slackware by a few years and has been part of the distro since
its early days. Slackware 1.01 featured Bash-1.12.3. Over the years Bash has developed a wide range
of features and has become the default shell in many distros including Slackware.

Login & Interactive Shells

To understand how shell initialisation files are loaded we need to introduce the concept of login and
interactive shells.

In a nutshell (no pun intended), a login shell is the one that starts when a user logs in providing
their username and password (also remotely using //ssh). Technically speaking, a login shell is one
whose first character of argument zero is a - or, or one started with the ''–login option (Source:
Bash manual). An interactive shell is one which a user can interact with by
typing commands on the command prompt. Please note that although some shell
scripts allow for user interaction, the shell they start is non-interactive.
The following are some common ways of shell invocation: ^Shell
Invocation^Login^Non-login^Interactive^Non-interactive| |Login at runlevel 3

http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29

Last update: 2012/10/28 21:39 (UTC) howtos:cli_manual:shells https://docs.slackware.com/howtos:cli_manual:shells

https://docs.slackware.com/ Printed on 2021/06/06 23:21 (UTC)

(Slackware default login)| + | - | + | - | |Login remotely (ssh)| + | - | + |
- | |Opening a terminal window|-|+|+|-| |Opening a terminal window (bash -l1)

1)

When a shell is invoked with the -l or ''–login flags, it acts as a login shell)))|+|-
|+|-| |Shell script (#!/bin/bash)|-|+|-|+| |Remote command (ssh host
command)|-|+|-|+| |Switch user (su)|-|+|+|-| |Switch user (su -)|+|-|+|-|
<note>You can tell whether a shell is a login one by checking the value of
the $0 variable. If it starts with a dash (-), it is a login one:
<code>user@darkstar:~$ echo $0 -bash</code></note> The distinction between
login and non-login shells is crucial in order to understand which startup files
are read when a shell starts, which, in turn, determines which environment
variables are set. A good example illustrating this problem is the $PATH
variable: su (non-login shell) <code>root@darkstar:/home/user# echo $PATH
/usr/local/sbin:/usr/local/bin:/sbin:/usr/sbin:/bin:/usr/bin</code> su - or
su -l (login shell) <code>root@darkstar:~# echo $PATH
/usr/local/sbin:/usr/sbin:/sbin:/usr/local/bin:/usr/bin:/bin:/usr/games:/usr/
lib/java/bin:/usr/lib/kde4/libexec:/usr/lib/qt/bin:/usr/share/texmf/bin</code
> For that reason, it is recommended to start a login shell with (su -) when
building SlackBuild scripts. ====Login Shell Initialisation==== Examples:
Slackware login (runlevel 3), an interactive shell started with the -l or
–login flags To load environment variables and settings a shell sources a
number of files. <note>Sourcing a file is the act of executing it in the
current shell. There are 2 ways of sourcing a file: <code>user@darkstar:~$
source filename</code> or using a short notation: <code>user@darkstar:~$.
filename</code> By contrast, executing a file (./filename) executes the script
in a new shell:</note> A login shell reads startup files in the following
order: * /etc/profile * ~/.bash_profile * ~/.bash_login * ~/.profile After executing
commands from /etc/profile, the shell checks if the next file exists and is
readable. If so, it then executes the commands that the file contains. On a
fresh Slackware install, only /etc/profile exists and sets the environment
system wide. If a user wants to override their login shell settings, they
need to manually create one of the other files. Please note that each of this
files is sourced only once when a user logs in. <note>Please note that the
tilde sign (~) in a pathname refers to a user's /home directory. For example,
for user fred the ~/ pathname expands to /home/fred/. To access a user's /home
directory, the $HOME variable can be used as well. Environment variables
will be discussed later.</note> ====Interactive Non-login Shell
Initialisation==== Example: run a terminal window from your desktop or
application menu An interactive non-login shell inherits some environment
settings from the login shell startup files and then sources ~/.bashrc if it
exists and is readable. By default, the file does not exist in Slackware. A
common first step for many Slackware users is to create this file and source
/etc/profile to load more environment settings (eg. a more informative command
prompt): <code bash ~/.bashrc> source /etc/profile </code> Please note that,
if it exists, ~/.bashrc is loaded each time you start a terminal window. ====
Non-interactive Non-login Shell Initialisation==== Example: run a shell
script A non-interactive non-login shell inherits some variables from the
login shell and looks for the environment variable BASH_ENV which points to a
startup file to be read by the shell. By default, the BASH_ENV variable is
not set in Slackware. If you have some custom environment variables in your

2021/06/06 23:21 (UTC) 3/9 Shells

SlackDocs - https://docs.slackware.com/

~/.bashrc and you want them read by your scripts as well, you can set this
variable in eg. ~/.bash_profile: <code>BASH_ENV=$HOME/.bashrc</code>
======Configuring Your Environment====== While bash provides very reasonable
defaults, the power of the command line interface lies in the possibility to
customise your working environment to your own preferences and needs. The
following sections will discuss some of the steps you can take to customise
your CLI environment. =====Do I have to create / edit all of the startup
files mentioned above?===== No, you don't. See below. =====~/.bashrc vs
~/.bash_profile===== Admittedly, the fact that ~/.bash_profile is read by the
login shell (ie. only once when you log in) whereas ~/.bashrc is sourced by
non-login interactive shells (each time you start a terminal window) allows
for some proper fine tuning of your environment. After all, some variables
just need to be assigned once. There is no point in resetting them each time
you start a terminal window. For convenience reasons, however, a more common
approach is to do keep all your customisations in one file, usually ~/.bashrc,
that will be sourced by both login and non-login shells. 1. Make sure a login
shell sources ~/.bashrc by adding the following to ~/.bash_profile: <file bash
.bash_profile>if [-f ~/.bashrc]; then . ~/.bashrc fi</file> If you are
going to do any customisations of root's environment (eg. configuring root's
shell prompt discussed below), you need to do the above for root user as
well. 2. Place all your customisations in ~/.bashrc. That way both interactive
non-login and login shells read ~/.bashrc === ~/.bashrc === As it was
mentioned above, first we read a global startup file: <code>.
/etc/profile</code> You can view all the environment variables that are set
with the env or printenvcommands: <code>user@darkstar:~$ env</code> Now we can
override some system default settings. <note important>Please note that to
implement any changes that you have made in ~/.bashrc, you need to source it
afterwards: <code>source ~/.bashrc</code></note> ===== Customising Variables
===== Before we do any customisations, let us mention a few words about
variables. Variables are containers that hold a value (eg. string or number) that
can be later accessed by a shell. <code>user@darkstar:~/bin$
MYVAR=“some_value” user@darkstar:~/bin$ echo $MYVAR some_value</code> Please
note that when we assign some value to a variable we do not use the dollar
sign ($) in front of a variable name: <code>VARIABLE=“some_value”</code> We
use $ when we want to access the value stored in a variable:
<code>user@darkstar:~$ echo $VARIABLE some_value</code> When creating
variables it is important to remember the following: - variable names can
contain alphanumeric characters, as well as the underscore (_). Please note
that a variable name cannot start with a number. - Do not put any whitespaces
around the equal sign (=) or in the variable name. - It is recommended to
wrap the value of a variable in double quotes (“) to avoid possible problems
when referring to its value. - Variable names are case sensitive ===Exporting
a variable=== Please consider the following example: <code>MY_VAR=“Some text”
export MY_EXPORTED_VAR=“More text”</code> By exporting a variable you make it
accessible to any sub-shells created in the current shell. In other words, if
you want a script to be aware of a variable, you need to export it. If you
want to see all the exported variables in the current shell, type:
<code>export -p</code> ==== $PATH Variable ==== The $PATH variable holds a
colon (:) separated list of directories containing executable files. You can
use echo to check the value of a particular variable. The current value of
the $PATH variable on your system should be as follows:

Last update: 2012/10/28 21:39 (UTC) howtos:cli_manual:shells https://docs.slackware.com/howtos:cli_manual:shells

https://docs.slackware.com/ Printed on 2021/06/06 23:21 (UTC)

<code>user@darkstar:~$ echo $PATH
PATH=/usr/local/bin:/usr/bin:/bin:/usr/games:/usr/lib/java/bin:/usr/lib/kde4/
libexec:/usr/lib/qt/bin:/usr/share/texmf/bin:.</code> <note>Please note the
trailing . (dot). In Bash a dot in a pathname represents the current working
directory. For security reasons, it is customary to place the current working
directory at the end of your $PATH to avoid overriding system
executables.</note> Users typically store their scripts in ~/bin so let us
create the directory and include it in $PATH. <code>user@darkstar:~$ mkdir
~/bin user@darkstar:~$ nano ~/.bashrc</code> <file bash .bashrc> .
/etc/profile PATH=$PATH:~/bin</file> Now you need to source the file to put
the changes into practice: <code>user@darkstar:~$ source ~/.bashrc</code>
====$CDPATH Variable ==== If you work in certain directories on a regular
basis, you might want to include them in the $CDPATH variable. Suppose you
often work in the slackbuilds directory which contains some builds:
<code>user@darkstar:~$ cd ~/data/projects/slackbuilds/
user@darkstar:~/data/projects/slackbuilds$ ls i3 i3status yajl dmenu
libev</code> Add it to the $CDPATH variable by modifying ~/.bashrc: <file bash
.bashrc> . /etc/profile PATH=$PATH:~/bin
CDPATH=$CDPATH:~/data/projects/slackbuilds/</file> Now you should be able to
cd to any of those directories from any place:
<code>user$darkstar:~/.config/xfce4$ pwd /home/user/.config/xfce4
user@darkstar:~$ cd yajl /home/user/data/projects/slackbuilds/yajl</code>
==== Set the Default Editor ==== For historical reasons, there still exist 2
separate environment variables ($VISUAL and $EDITOR) responsible for
specifying the default command line editor. You can use any of them or better
still, assign the same value to both of them. Bash chooses the default editor
by checking the $VISUAL and then $EDITOR. If neither of them is set, it opens
Emacs. Add the following to ~/.bashrc (Obviously replace vim with an editor of
choice): <code>export VISUAL=vim export EDITOR=vim</code> ====Configuring a
Shell Prompt ==== When you first open a terminal window in Slackware, you are
likely to see the following shell prompt: <code>bash-4.2$</code> It is quite
bare and the only thing it tells us is that we run Bash version 4.2 and that
we run it as a standard user (as opposed to root). The moment we source the
system-wide configuration file, we will get a considerably more informative
shell prompt displaying the current user, the hostname as well as the current
working directory: <code>username@hostname:~$</code> By default the primary
Slackware bash prompt is configured in /etc/profile and stored in the PS1
variable: <code>PS1='\u@\h:\w\$ ' … PS2='> '</code> You may also notice the
PS2 variable which stores a secondary shell prompt (> '') which is used when we split
a very long command with the backslash (\) or when the shell is waiting for further input before
interpreting the command, as in:

user@darkstar:~$./configure --prefix=/usr --sysconfdir=/etc --enable-
warnings \
> --disable-atsui --disable-gtk-doc --disable-glitz --disable-quartz --
disable-static \
> --disable-win32 --disable-xcb

user@darkstar:~$ echo "This is a piece
> of text. The moment I close the string
> with a double quote, bash will execute the command."

2021/06/06 23:21 (UTC) 5/9 Shells

SlackDocs - https://docs.slackware.com/

This is a piece
of text. The moment I close the string
with a double quote, bash will execute the command.
user@darkstar:~$

Please note that there also exist variables PS3 and PS4 which store the select
command and execution trace prompts, respectively (more information: man bash).

===Display the Current Prompt Settings=== To display the current prompt settings, you can echo
the contents of the PS1 variable:

user@darkstar:~$ echo $PS1
\u@\h: \w\$
user@darkstar:~$ echo $PS2
>

As you can guess from the example above, \u stands for the username, \h for the hostname, and \w
represents the current working directory pathname. The trailing \$ expands to # if you are root (ie.
the effective UID is 0) and $ in all other cases. Have a a look at this table of some common special
characters used in the PS1 variable:
Character Description
\u username of the current user
\h hostname (short output - to the first .)
\H FQDN (eg. darkstar.domain.com)
\w full pathname of the current working directory
\W the basename of the current working directory
\d current date
\t current time in 24-hour (HH:MM:SS) format
\T current time in 12-hour format
\! current command history number
\j number of jobs that the current shell manages
===Setting the Prompt=== You can test some prompt configurations by temporarily defining the
variable directly in the shell

user@darkstar:~$ PS1="\u@\h \! \j \t \$ "
user@darkstar 503 0 20:30:24 $

Apart from the standard user and host names, the prompt now displays the bash history number, the
number of jobs running in the background, as well as the current time. You can get creative when
designing your own shell prompt, especially with the help of the command substitution $(…)
construct:

user@darkstar:~$ PS1="\u@\h [\$(ls | wc -l)]:\$ "
user@darkstar[9]:$

The above shell prompt will also display the number of files and directories in the current working
directory. It is important, however, to remember that the command prompt is there to help you. For
that reason, one needs to keep the balance between keeping the prompt informative and practical at
the same time. A very descriptive, but long, command prompt may easily hinder your productiveness.

Last update: 2012/10/28 21:39 (UTC) howtos:cli_manual:shells https://docs.slackware.com/howtos:cli_manual:shells

https://docs.slackware.com/ Printed on 2021/06/06 23:21 (UTC)

===Prompt in Colours=== One way to display the shell prompt in colour is to use the tput
command which checks the terminfo database and generates relevant codes for a terminal. It has a
number of capabilities including:

setaf - set ANSI foreground
setab - set ANSI background

Its syntax is as follows:
Command Description
tput setaf colour_code Set a foreground colour
tput setab colour_code Set a background colour
tput sgr0 Switch off any colours
===Colour Codes=== The values of colour codes are as follows:
Colour Colour Code
black 0
red 1
green 2
yellow 3
blue 4
magenta 5
cyan 6
white 7
===Configure the Prompt in Colour=== Let us define some colour variables in ~/.bashrc:

Defining foreground variables
P_BLACK="\[$(tput setaf 0)\]"
P_RED="\[$(tput setaf 1)\]"
P_GREEN="\[$(tput setaf 2)\]"
P_YELLOW="\[$(tput setaf 3)\]"
P_BLUE="\[$(tput setaf 4)\]"
P_MAGENTA="\[$(tput setaf 5)\]"
P_CYAN="\[$(tput setaf 6)\]"
P_WHITE="\[$(tput setaf 7)\]"
P_RESET="\[$(tput sgr0)\]"

Please note that we wrap ''\[…\] around the output of tput to indicate
that it contains non-printable characters. This helps avoid any
problems with calculating line wraps.</note> Having defined the
colour variables, we can go on to configure the prompt:
<code>PS1=“$P_BLUE\u@\h: \w \\$ $P_RESET”</code> This will
produce a blue prompt. Please note that we need to turn off any
colours at the end to prevent the commands we type from being
blue as well. The next prompt gives each section of the prompt a
d i f f e r e n t c o l o u r :
<code>PS1=“$P_GREEN\u$P_RED@$P_YELLOW\h:$P_CYAN\w$P_BLUE\\$

$P_RESET”</code> Bear in mind that
your output might look differently depending on a terminal and

2021/06/06 23:21 (UTC) 7/9 Shells

SlackDocs - https://docs.slackware.com/

its colour settings in eg. ~/.Xdefaults. ===Root Prompt=== It is
useful to give the root user a different prompt (the # character
will be red) by adding the following (+ colour definitions) to
t h e r o o t ' s . b a s h r c :
<code>PS1=“$P_GREEN\u$P_RED@$P_YELLOW\h:$P_CYAN\w$P_RED\\$
$P_RESET”</code> Do not forget to source root's .bashrc in its
.bash_profile to make sure it works for both non-login (su) and login
(su -) shells. ===Prompt Background Colour=== If you'd like to set
the prompt's background colour, you can also add the setab
capability. Here's an example (without the use of variables):
<code>PS1=“\[$(tput setab 4)$(tput setaf 7)\]\u@\h:\w $ \[$(tput
sgr0)\]”</code> ===Permanently Storing the Prompt=== Once you are
happy with your bash prompt, you can permanently store it in
~/.bashrc: <code>export PS1=“\u@\h \! \w\$ ”</code> =====Building
Aliases===== Aliases are shortcuts or abbreviated commands used
in a shell in order to avoid typing long commands. Aliases are
usually created to modify existing commands by adding some flags
or to join a few commands in order to create new custom commands.
An example of an alias would be: <code>alias ll='ls -l'</code>
Now typing ll calls the ls command with the -l (or long listing format)
flag. Another example would be creating a shortcut to query
installed packages on a Slackware system: <code>alias qp='ls
/var/log/packages | grep'</code> <code>user@darkstar:~$ qp emacs
emacs-24.2-x86_64-1</code> The general syntax of an alias is:
<code>alias name='full command'</code> To create a temporary
alias for the current session, just define it directly on a
command line. It will not be remembered when you start another
session. To store an alias permanently to be accessible by the
shell in the future, place it in ~/.bashrc. If you need to
(temporarily) switch off an alias you can use the unalias built-in:
<code>user@darkstar:~$ qp emacs emacs-24.2-x86_64-1
user@darkstar:~$ unalias qp user@darkstar:~$ qp bash: qp: command
not found</code> If you run a (long) command on a regular basis,
it might be convenient to create an alias for it. Have a look at
some more examples of aliases below. This may help you create
your own aliases. <note important>Please remember that creating
aliases that replace system commands may introduce security risks
so always consider creating a new command instead.</note>
<code>alias e='exit' alias ll alias lla='ls -al | less' alias
mkdir='mkdir -pv' alias rm='rm -i' alias 1.='cd .. ; pwd' alias
2.='cd ../.. ; pwd' alias 3.='cd ../../.. ; pwd' alias 4.='cd
../../../.. ; pwd' alias h='history' alias eq='alsamixer -D
equal' alias emc='emacs -nw' alias org='emacs -nw
/home/user/data/todo.org' alias ci3='vim /home/user/.i3/config'
alias psp='ps aux | grep' alias wic='nmap -sP 192.168.1.0/24'
alias dl='cd /home/user/data/downloads/ ; ls' alias mftp='lftp
sftp:user@ftp.server.com' alias mylaptop='ssh user@ip_address'
alias myserver='ssh user@ip_address' alias t='task' alias
r2j='mkdir jpg; ufraw-batch –out-type=jpeg –out-path=./jpg
./*.NEF' </code> === Aliases and Security === Sometimes aliases
may pose a security risk in a sense that they can spoof other

Last update: 2012/10/28 21:39 (UTC) howtos:cli_manual:shells https://docs.slackware.com/howtos:cli_manual:shells

https://docs.slackware.com/ Printed on 2021/06/06 23:21 (UTC)

commands (eg. on compromised systems). Consider the following:
<code>alias ls='some_nasty_command'</code> To view currently set
aliases, just type alias at the command prompt. To clear all the
aliases, type: <code>\unalias -a</code> Escaping the command with
\ prevents any alias expansion in case someone had tried to spoof
the unalias command. See the following: <code>user@darkstar:~$
pwd /home/user user@darkstar:~$ alias pwd='echo 666'
user@darkstar:~$ pwd 666 user@darkstar:~$ \pwd /home/user</code>
=====Creating functions===== =====~/.bashrc===== At the
moment our ~/.bashrc looks as follows. At the bottom you'll see
some additional settings that have not been discussed. The
comments above them should clarify their meaning. <code> # load
the system-wide environment source /etc/profile # Add a directory
with your scripts to the path. PATH=$PATH:~/bin # Configure the
CDPATH variable to include a frequently visited directories
CDPATH=$CDPATH:~/data/projects/slackbuilds/ # Set the default
editor export VISUAL=vim export EDITOR=vim # Defining foreground
variables for the prompt P_BLACK=“\[$(tput setaf 0)\]”
P_RED=“\[$(tput setaf 1)\]” P_GREEN=“\[$(tput setaf 2)\]”
P_YELLOW=“\[$(tput setaf 3)\]” P_BLUE=“\[$(tput setaf 4)\]”
P_MAGENTA=“\[$(tput setaf 5)\]” P_CYAN=“\[$(tput setaf 6)\]”
P_WHITE=“\[$(tput setaf 7)\]” P_RESET=“\[$(tput sgr0)\]” #
Setting a fancy prompt for the current user export
PS1=“$P_GREEN\u$P_RED@$P_YELLOW\h:$P_CYAN\w$P_BLUE\\$ $P_RESET” #
Setting aliases alias e='exit' alias ll='ls -l' alias lla='ls -al
| less' alias mkdir='mkdir -pv' alias rm='rm -i' alias 1.='cd ..
; pwd' alias 2.='cd ../.. ; pwd' alias 3.='cd ../../.. ; pwd'
alias 4.='cd ../../../.. ; pwd' alias h='history' alias
eq='alsamixer -D equal' alias emc='emacs -nw' alias org='emacs -
n w / h o m e / u s e r / d a t a / t o d o . o r g ' a l i a s c i 3 = ' v i m
/home/user/.i3/config' alias psp='ps aux | grep' alias wic='nmap
-sP 192.168.1.0/24' alias dl='cd /home/user/data/downloads/ ; ls'
alias mftp='lftp sftp:user@ftp.server.com' alias mylaptop='ssh
user@ip_address' alias myserver='ssh user@ip_address' alias
t='task' alias r2j='mkdir jpg; ufraw-batch –out-type=jpeg –out-
p a t h = . / j p g . / * . N E F '
###
A d d i t i o n a l s e t t i n g s :
###
Specify an NNTP Server export NNTPSERVER='aioe.org' # To
take advantage of multicore CPUs you can use the MAKEFLAGS
variable. # For example the equivalent of “make -j2” would be: #
export MAKEFLAGS=”-j2“ # Uncomment the above line to use it.
< / c o d e > = = = = = O t h e r c o n f i g u r a t i o n f i l e s = = = = =
====~/.bash_logout==== ====~/.inputrc===== ====~/.netrc=====
=====Wildcards===== =====Shell history===== ====== Useful
Keybindings ====== ====== Sources ====== * Originally written by
Marcin Herda
work in progress, author sycamorex

https://docs.slackware.com/wiki:user:sycamorex
https://docs.slackware.com/tag:work_in_progress?do=showtag&tag=work_in_progress
https://docs.slackware.com/tag:author_sycamorex?do=showtag&tag=author_sycamorex

2021/06/06 23:21 (UTC) 9/9 Shells

SlackDocs - https://docs.slackware.com/

From:
https://docs.slackware.com/ - SlackDocs

Permanent link:
https://docs.slackware.com/howtos:cli_manual:shells

Last update: 2012/10/28 21:39 (UTC)

https://docs.slackware.com/
https://docs.slackware.com/howtos:cli_manual:shells

	Shells
	Bash and its Startup Files
	Login & Interactive Shells

