

[image: ../Images/slackbook_epub_cover.png]

Slackware Linux Essentials

[image: ../Images/slackbook_slackmetal.jpg]

The Slackbook pages in this wiki are not to be changed.

The contents will be updated by the site editors to match the current working copy of the slackbook by the original authors.

Conventions Used in this Book

To provide a consistent and easy to read text, several conventions are followed throughout the book.

Typographic Conventions

Italic

An italic font is used for commands, emphasized text, and the first usage of technical terms.

Monospace

A monospaced font is used for error messages, commands, environment variables, names of ports, hostnames, user names, group names, device names, variables, and code fragments.

Bold

A bold font is used for user input in examples.

User Input

Keys are shown in bold to stand out from other text. Key combinations that are meant to be typed simultaneously are shown with “+” between the keys, such as:

Ctrl+Alt+Del

Meaning the user should type the Ctrl, Alt, and Del keys at the same time.

Keys that are meant to be typed in sequence will be separated with commas, for example:

Ctrl+X, Ctrl+Shift

Would mean that the user is expected to type the Ctrl and X keys simultaneously and then to type the Ctrl and Shift keys simultaneously.

Examples

Examples starting with E:\> indicate a MS-DOS® command. Unless otherwise noted, these commands may be executed from a “Command Prompt” window in a modern Microsoft® Windows® environment.

D:\> rawrite a: bare.i

Examples starting with # indicate a command that must be invoked as the superuser in Slackware. You can login as root to type the command, or login as your normal account and use su(1) to gain superuser privileges.

dd if=bare.i of=/dev/fd0

Examples starting with % indicate a command that should be invoked from a normal user account. Unless otherwise noted, C-shell syntax is used for setting environment variables and other shell commands.

% top

Sources

	 Original source: http://slackbook.org/[bookmark: backto_23][23]

slackbook

Introduction to Slackware

Why Use Slackware?

Slackware has a long tradition of excellence. Started in 1992 and
first released in 1993, Slackware is the oldest surviving commercial
Linux distribution. Slackware's focus on making a clean, simple Linux
distribution that is as UNIX-like as possible makes it a natural choice
for those people who really want to learn about Linux and other
UNIX-like operating systems. In a 2012 interview, Slackware founder and
benevolent dictator for life, Patrick Volkerding, put it thusly.

“I try not to let things get juggled around simply for the sake of
making them different. People who come back to Slackware after a time
tend to be pleasantly surprised that they don't need to relearn how to
do everything. This has given us quite a loyal following, for which I
am grateful.”

Slackware's simplicity makes it ideal for
those users who want to create their own custom systems. Of course,
Slackware is great in its own right as a desktop, workstation, or server
as well.

Differences Compared to Other Linux Distributions

There are a great number of differences between Slackware and other
mainstream distributions such as Red Hat, Debian, and Ubuntu. Perhaps
the greatest difference is the lack of “hand-holding” that Slackware
will do for the administrator. Many of those other distributions ship
with custom graphical configuration tools for all manner of services. In
many cases, these configuration tools are the preferred method of setting
up applications on these systems and will overwrite any changes you make
to the configuration files via other means. These tools often make it easy
(or at least possible) for a rookie with no in-depth understanding of
his system to setup basic services; however, they also make it difficult
to do anything too out of the ordinary. In contrast, Slackware expects
you, the system administrator, to do these tasks on your own.
Slackware provides no general purpose setup tools beyond those included
with the source code published by upstream developers. This means there
is often a somewhat steeper learning curve associated with Slackware, even
for those users familiar with other Linux distributions, but also makes it
much easier to do whatever you want with your operating system.

Also, you may hear users of other distributions say that Slackware has
no package management system. This is completely and obviously false.
Slackware has always had package management (see Package Management[bookmark: backto_24][24] for more information). What it does not have is
automatic dependency resolution - Slackware's package tools trade
dependency management for simplicity, ease-of-use, and reliability.

Licensing

Each piece of Slackware (this is true of all Linux distributions) is
developed by different people (or teams of people), and each group has
their own ideas about what it means to be “free”. Because of this,
there are literally dozens and dozens of different licenses granting
you different permissions regarding their use or distribution.
Fortunately dealing with free software licenses isn't as difficult as
it may first appear. Most things are licensed with either the Gnu
General Public License or the BSD license. Sometimes you'll encounter a
piece of software with a different license, but in almost all cases
they are remarkably similar to either the GPL or the BSD license.

Probably the most popular license in use within the Free Software
community is the GNU General Public License. The GPL was created by
the Free Software Foundation[bookmark: backto_25][25],
which actively works to create and distribute software that guarantees
the freedoms which they believe are basic rights. In fact, this is
the very group that coined the term “Free Software.” The GPL imposes
no restrictions on the use of software. In fact, you don't even have
to accept the terms of the license in order to use the software, but
you are not allowed to redistribute the software or any changes to it
without abiding by the terms of the license agreement. A large number
of software projects shipped with Slackware, from the Linux kernel
itself to the Samba project, are released under the terms of the GPL.

Another very common license is the BSD license, which is arguably “more
free” than the GPL because it imposes virtually no restrictions on
derivative works. The BSD license simply requires that the copyright
remain intact along with a simple disclaimer. Many of the utilities
specific to Slackware are licensed with a BSD-style license, and this
is the preferred license for many smaller projects and tools.

Chapter Navigation

Next Chapter: Installation[bookmark: backto_26][26]

Sources

	 Original source: http://www.slackbook.org/beta[bookmark: backto_27][27]

	 Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook

Installation

Slackware's installation is a bit more simplistic than that of most
other Linux distributions and is very reminiscent of installing one of the
varieties of BSD operating systems. If you're familiar with those, you
should feel right at home. If you've never installed Slackware or have
only used distributions that make use of graphical installers, you may
feel a bit overwhelmed at first. Don't panic! The installation is very easy
once you understand it, and it works on just about any x86 or x86_64
platform.

The latest versions of Slackware Linux are distributed on DVD or CD
media, but Slackware can be installed in a variety of other ways. We're
only going to focus on the most common method - booting from a DVD - in
this book. If you don't have a CD or DVD drive, you might wish to take
a look at the various README files inside the
usb-and-pxe-installers directory at your favorite
Slackware mirror. This directory includes the necessary files and
instructions for booting the Slackware installer from a USB flash drive
or from a network card that support PXE. The files there are the best
source of information available for such boot methods.

Booting the Installer

Booting the installer is simply a process of inserting the Slackware
install disk into your CD or DVD drive and rebooting. You may have to
enter your computer's BIOS and alter the boot order to place the
optical drive at a higher boot priority than your hard drives. Some
computers allow you to change the boot order on the fly by pressing a
specific function key during system boot-up. Since every computer is
different, we can't offer instructions on how to do this, but the
method is simple on nearly all machines.

Once your computer boots from the CD you'll be taken to a screen that
allows you to enter any special kernel parameters. This is here
primarily to allow you to use the installer as a sort of rescue disk.
Some systems may need special kernel parameters in order to boot, but
these are very rare exceptions to the norm. Most users can simply press
enter to let the kernel boot.

Welcome to Slackware version 14.0 (Linux kernel 3.2.27)!
If you need to pass extra parameters to the kernel, enter them at the prompt
below after the name of the kernel to boot (huge.s etc).
In a pinch, you can boot your system from here with a command like:
boot: huge.s root=/dev/sda1 rdinit= ro
In the example above, /dev/sda1 is the / Linux partition.
To test your memory with memtest86+, enter memtest on the boot line below.
This prompt is just for entering extra parameters. If you don't need to enter
any parameters, hit ENTER to boot the default kernel "huge.s" or press [F2]
for a listing of more kernel choices.

After pressing ENTER
you should see a lot of text go flying across your screen. Don't be
alarmed, this is all perfectly normal. The text you see is generated by
the kernel during boot-up as it discovers your hardware and prepares to
load the operating system (in this case, the installer). You can later
read these messages with the dmesg(1)
command if you're interested. Often these messages are very important
for troubleshooting any hardware problems you may have. Once the kernel
has completed its hardware discovery, the messages should stop and
you'll be given an option to load support for non-us keyboards.

<OPTION TO LOAD SUPPORT FOR NON-US KEYBOARD>
If you are not using a US keyboard, you may need to load a different
keyboard map. To select a different keyboard map, please enter 1
now. To continue using the US map, just hit enter.
Enter 1 to select a keyboard map: _

Entering 1 and pressing ENTER will
give you a list of keyboard mappings. Simply select the mapping that
matches your keyboard type and continue on.

Welcome to the Slackware Linux installation disk! (version 14.0)
IMPORTANT! READ THE INFORMATION BELOW CAREFULLY.
- You will need one or more partitions of type 'Linux' prepared. It is also
recommended that you create a swap partition (type 'Linux swap') prior
to installation. For more information, run 'setup' and read the help file.
- If you're having problems that you think might be related to low memory, you
can try activating a swap partition before you run setup. After making a
swap partition (type 82) with cfdisk or fdisk, activate it like this:
mkswap /dev/<partition> ; swapon /dev/<partition>
- Once you have prepared the disk partitions for Linux, type 'setup' to begin
the installation process.
- If you do not have a color monitor, type: TERM=vt100
before you start 'setup'.
You may now login as 'root'.
slackware login: root

Unlike other Linux distributions which boot you directly into a
dedicated installer program, Slackware's installer places you in a
limited Linux distribution loaded into your system's RAM. This
limited distribution is then used to run all the installation programs
manually, or can be used in emergencies to fix a broken system that
fails to boot. Now that you're logged in as root (there is no password
within the installer) it's time to start setting up your disks. At this
point, you may setup software RAID or LVM support if you wish or even
an encrypted root partition, but
those topics are outside of the scope of this book. I encourage you to
refer to the excellent README_RAID.TXT,
README_LVM.TXT, and
README_CRYPT.TXT files on your CD if you desire to
setup your system with these advanced tools. Most users won't have any
need to do so and should proceed directly to partitioning.

Partitioning

Unlike many other Linux distributions, Slackware does not make use of a
dedicated graphical disk partitioning tool in its installer. Rather,
Slackware makes use of the traditional Linux partitioning tools, the
very same tools that you will have available once you've installed
Slackware. Traditionally, partitioning is performed with either
fdisk(8) or
cfdisk(8), both of which are console tools.
cfdisk is preferred by many people because
it is curses menu-based, but either works well. Additionally, Slackware
includes sfdisk(8) and
gdisk(8). These are more powerful command-line
partitioning tools. gdisk is required to
alter GUID partition tables found on some of today's larger hard
drives. In this book, we're going to focus on using
fdisk, but the other tools are similar. You
can find additional instructions for using these other tools online or
in their man pages.

In order to partition your hard drive, you'll first need to know how to
identify it. In Linux, all hardware is identified by a special file
called a device file. These are (typically) located in the
/dev directory. Nearly all hard drives today,
are identified as SCSI hard drives by
the kernel, and as such, they'll be assigned a device node such as
/dev/sda. (Once upon a time each hard drive type
had its own unique identifier such as /dev/hda for the first IDE drive.
Over the years the kernel's SCSI subsystem morphed into a generic drive
access system and came to be used for all hard disks and optical drives
no matter how they are connected to your computer. If you think this is
confusing, imagine what it would be like if you had a system with a
SCSI hard drive, a SATA CD-ROM, and a USB memory stick, all with
unique subsystem indentifiers. The current system is not only cleaner,
but performs better as well.)

If you don't know which device node is
assigned to your hard drive, fdisk can help you
find out.

root@slackware:/# fdisk -l
Disk /dev/sda: 72.7 GB, 72725037056 bytes
255 heads, 63 sectors/track, 8841 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Here, you can see that my system has a hard drive located at
/dev/sda that is 72.7 GB in size. You can also
see some additional information about this hard drive.
The -l argument to
fdisk tells it to display the hard drives
and all the partitions it finds on those drives, but it won't make any
changes to the disks. In order to actually partition our drives, we'll
have to tell fdisk the drive on which to operate.

root@slackware:/# fdisk /dev/sda
The number of cylinders for this disk is set to 8841.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs
(e.g., DOS FDISK, OS/2 FDISK)
Command (m for help):

Now we've told fdisk what disk we wish to partition, and it has dropped
us into command mode after printing an annoying warning message. The
1024 cylinder limit has not been a problem for quite some time, and
Slackware's boot loader will have no trouble booting disks larger than
this. Typing m and pressing ENTER will print out a helpful
message telling you what to do with fdisk.

Command (m for help): m
Command action
a toggle a bootable flag
b edit bsd disklabel
c toggle the dos compatibility flag
d delete a partition
l list known partition types
m print this menu
n add a new partition
o create a new empty DOS partition table
p print the partition table
q quit without saving changes
s create a new empty Sun disklabel
t change a partition's system id
u change display/entry units
v verify the partition table
w write table to disk and exit
x extra functionality (experts only)

Now that we know what commands will do what, it's time to begin partitioning
our drive. At a minimum, you will need a single /
partition, and you should also create a swap partition.
You might also want to make a separate /home
partition for storing user files (this will make it easier to upgrade
later or to install a different Linux operating system by keeping all of
your users' files on a separate partition). Therefore, let's go ahead and
make three partitions. The command to create a new partition is
n (which you noticed when you read the help).

Command: (m for help): n
Command action
e extended
p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-8841, default 1): 1
Last cylinder or +size or +sizeM or +sizeK (1-8841, default 8841): +8G
Command (m for help): n
Command action
e extended
p primary partition (1-4)
p
Partition number (1-4): 2
First cylinder (975-8841, default 975): 975
Last cylinder or +size or +sizeM or +sizeK (975-8841, default 8841): +1G

Here we have created two partitions. The first is 8GB in size, and the
second is only 1GB. We can view our existing partitions with the
p command.

 Command (m for help): p
Disk /dev/sda: 72.7 GB, 72725037056 bytes
255 heads, 63 sectors/track, 8841 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Device Boot Start End Blocks Id System
/dev/sda1 1 974 7823623+ 83 Linux
/dev/sda2 975 1097 987997+ 83 Linux

Both of these partitions are of type “83” which is the standard Linux
filesystem. We will need to change /dev/sda2 to
type “82” in order to make this a swap partition. We will do this with
the t argument to fdisk.

Command (m for help): t
Partition number (1-4): 2
Hex code (type L to list codes): 82
Command (me for help): p
Disk /dev/sda: 72.7 GB, 72725037056 bytes
255 heads, 63 sectors/track, 8841 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Device Boot Start End Blocks Id System
/dev/sda1 1 974 7823623+ 83 Linux
/dev/sda2 975 1097 987997+ 82 Linux swap

The swap partition is a special partition that is used for
virtual memory by the Linux kernel. If for some reason you run out of
RAM, the kernel will move the contents of some of the RAM to swap in
order to prevent a crash. The size of your swap partition is up to
you. A great many people have participated in a great many flamewars
on the size of swap partitions, but a good rule of thumb is to make your
swap partition about twice the size of your system's RAM. Since my machine
has only 512MB of RAM, I decided to make my swap partition 1GB. You may
wish to experiment with your swap partition's size and see what works best
for you, but generally there is no harm in having “too much” swap.
If you plan to
use hibernation (suspend to disk), you will need to have at least as much
swap space as you have physical memory (RAM), so keep that in mind.

At this point we can stop, write these changes to the disk, and
continue on, but I'm going to go ahead and make a third partition which
will be mounted at /home.

Command: (me for help): n
Command action
e extended
p primary partition (1-4)
p
Partition number (1-4): 3
First cylinder (1098-8841, default 1098): 1098
Last cylinder or +size or +sizeM or +sizeK (1098-8841, default 8841): 8841

Now it's time to finish up and write these changes to disk.

Command: (me for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table.
Syncing disks.
root@slackware:/#

At this point, we are done partitioning our disks and are ready to
begin the setup program. However, if you
have created any extended partitions, you may wish to reboot once to
ensure that they are properly read by the kernel.

The setup Program

Now that you've created your partitions it's time to run the
setup program to install Slackware.
setup will handle formatting partitions,
installing packages, and running basic configuration scripts
step-by-step. In order to do so, just type
setup at your shell prompt.

[image: ../Images/slackbook_setup-program.png]

Help

If you've never installed Slackware before, you can get a very basic
over-view of the Slackware installer by reading the Help menu.
Most of the information here is on navigating through the installer
which should be fairly intuitive, but if you've never used a
curses-based program before you may find this useful.

[image: ../Images/slackbook_setup-help.png]

Keymap

Before we go any further, Slackware gives you the opportunity to
select a different mapping for your keyboard. If you're using a
standard US keyboard you can safely skip this step, but if you're
using an international keyboard you will want to select the correct
mapping now. This ensures that the keys you press on your keyboard
will do exactly what you expect them to do.

[image: ../Images/slackbook_setup-keymap.png]

Addswap

If you created a swap partition, this step will allow you to enable
it before running any memory-intensive activities like installing
packages. swap space is essentially virtual memory. It's a hard drive
partition (or a file, though Slackware's installer does not support
swap files) where regions of active system memory get copied when
your computer is out of useable RAM. This lets the computer “swap”
programs in and out of active RAM, allowing you to use more memory
than your computer actually has. This step will also add your swap
partition to /etc/fstab so it will be available
to your OS.

[image: ../Images/slackbook_setup-swap.png]

Target

Our next step is selecting our root partition and any other
partitions we'd like Slackware to utilize. You'll be given a choice
of filesystems to use and whether or not to format the partition. If
you're installing to a new partition you must format it. If you have
a partition with data on it you'd like to save, don't. For example,
many users have a seperate /home partition used
for user data and elect not to format it on install. This lets them
install newer versions of Slackware without having to backup and
restore this data.

[image: ../Images/slackbook_setup-target.png]

Source

Here you'll tell the installer where to find the Slackware packages.
The most common method is to use the Slackware install DVD or CDs,
but various other options are available. If you have your
packages installed to a partition that you setup in the previous
step, you can install from that partition or a pre-mounted directory.
(You may need to mount that partition with
mount(8) first. See chapter 11 for more
details.) Additionally, Slackware offers a variety of networked
options such as NFS shares, FTP, HTTP, and Samba. If you select a
network installation, Slackware will prompt you for TCP/IP
information first. We're only going to discuss installation from the
DVD, but other methods are similar and straightforward.

[image: ../Images/slackbook_setup-source.png]

Select

One unique feature of Slackware is its manner of dividing packages
into disksets. At the beginning of time, network access to FTP
servers was available only through incredibly slow 300 baud modems,
so Slackware was split into disk sets that would fit onto floppy
disks so users could download and install only those packages they
were interested in. Today that practice continues and the installer
allows you to chose which sets to install. This allows you to
easily skip packages you may not want, such as X and KDE on headless
servers or Emacs on everything. Please note that the “A” series is
always required.

[image: ../Images/slackbook_setup-select.png]

Install

Finally we get to the meat of the installer. At this stage, Slackware
will ask you what method to use to chose packages. If this is your
first time installing Slackware, the “full” method is highly
recommended. Even if this isn't your first time, you'll probably want
to use it anyway.

The “menu” and “expert” options allow you to choose
individual packages to install and are of use to skilled users
familiar with the OS. These methods allow such users to quickly prune
packages from the installer to build a very minimal system. If you
don't know what you're doing (sometimes even if you do) you're likely
to leave out crucial pieces of software and end up with a broken
system.

The “newbie” method can be very helpful to a new user, but
takes a very long time to install. This method will install all the
required packages, then prompt you individually for every other
package. The big advantage here is that is pauses and gives you a
brief overview of the package contents. For a new user, this
introduction into what is included with Slackware can be informative.
For most other users it is a long and tedious process.

The “custom” and “tagpath” options should only be used by people with
the greatest skill and expertise with Slackware. These methods allow
the user to install packages from custom tagfiles. Tagfiles are
only rarely used. We won't discuss them in this book.

[image: ../Images/slackbook_setup-install.png]

Configure

Once all the packages are installed you're nearly finished. At this
stage, Slackware will prompt you with a variety of configuration
tasks for your new operating system. Many of these are optional, but
most users will need to set something up here. Depending on the
packages you've installed, you may be offered different configuration
options than the ones shown here, but we've included all the really
important ones.

The first thing you'll likely be prompted to do is setup a boot disk.
In the past this was typically a 1.44MB floppy disk, but today's
Linux kernel is far too large to fit on a single floppy, so
Slackware offers to create a bootable USB flash memory stick. Of
course, your computer must support booting from USB in order to use
a USB boot stick (most modern computers do). If you do not intend to
use LILO or another traditional boot loader, you should consider
making a USB boot stick. Please note that doing so will erase the
contents of whatever memory stick you're using, so be careful.

[image: ../Images/slackbook_usb-boot-stick.png]

Nearly everyone will need to setup the LInux LOader, LILO. LILO is
in charge of booting the Linux kernel and connecting to an initrd or
the root filesystem. Without it (or some other boot loader), your new
Slackware operating system will not boot. Slackware offers a few
options here. The “simple” method attempts to automatically configure
LILO for your computer, and works well with very simple systems. If
Slackware is the only operating system on your computer, it should
configure and install LILO for you without any hassels. If you don't
trust the simpler method to work, or if you want to take an in-depth
look at how to configure LILO, the “expert” method is really not all
that complicated. This method will take you through each step and
offer to setup dual-boot for Windows and other Linux operating
systems. It also allows you to append kernel command parameters (most
users will not need to specify any though).

LILO is a very important part of your Slackware system, so an entire
section of the next chapter is devoted to it. If you're having
difficulty configuring LILO at this stage, you may want to skip ahead
and read Chapter 3 first, then return here.

[image: ../Images/slackbook_setup-lilo.png]

This simple step allows you to configure and activate a console mouse
for use outside of the graphical desktops. By activating a console
mouse, you'll be able to easily copy and paste from within the
Slackware terminal. Most users will need to choose one of the first
three options, but many are offered, and yes those ancient two-button
serial mice do work.

[image: ../Images/slackbook_setup-mouse.png]

The next stage in configuring your install is the network
configuration. If you don't wish to configure your network at this
stage, you may decline, but otherwise you'll be prompted to
provide a hostname for your computer. If you're unsure what to do
here, you might want to read through Networking|Chapter 14, Networking[bookmark: backto_28][28]
first.

The following screens will prompt you first for a hostname, then
for a domainname, such as
example.org. The combination of the hostname and the domainname
can be used to navigate between computers in your network if you
use an internal DNS service or maintain your
/etc/hosts file. If you skip setting
up your network, Slackware will name your computer “darkstar” after
a song by the Grateful Dead.

You have three options when setting your IP address; you may
assign it a static IP, use DHCP, or configure a
loopback connection. The simplest option, and probably the most
common for laptops or computers on a basic network, is to let a
DHCP server assign IP addresses dynamically. Unless you are
installing Slackware for use as a network server, you probably
do not need to setup a static IP address. If you're not sure which
of these options to choose, pick DHCP.

Rarely DHCP servers requires you specify a DHCP
hostname before you're permitted to connect. You can enter this on
the Set DHCP Hostname screen. This is almost always be the same
hostname you entered earlier.

If you choose to set a static IP address, Slackware will ask you to
enter it along with the netmask, gateway IP address, and what
nameserver to use.

The final screen during static IP address configuration is a
confirmation screen, where you're permitted to accept your
choices, edit them, or even restart the IP address configuration
in case you decide to use DHCP instead.

Once your network configuration is completed Slackware will
prompt you to configure the startup services that you wish to run
automatically upon boot. Helpful descriptions of each service appear
both to the right of the service name as well as at the bottom of the
screen. If you're not sure what to turn on, you can safely leave the
defaults in place. What services are started at boot time can be
easily modified later with pkgtool.

Every computer needs to keep track of the current time, and with so
many timezones around the world you
have to tell Slackware which one to use.
If your computer's hardware clock is set to UTC (Coordinated
Universal Time), you'll need to select that; most hardware clocks are
not set to UTC from the factory (though you could set it that way on
your own; Slackware doesn't care). Then simply select your timezone
from the list provided and off you go.

[image: ../Images/slackbook_setup-timezone.png]

If you installed the X disk set, you'll be prompted to select a
default window manager or desktop environment. What you select
here will apply to every user on your computer, unless that user
decides to run xwmconfig(1) and choose
a different one. Don't be alarmed if the options you see below do
not match the ones Slackware offers you.
xwmconfig only offers choices that you
installed. So for example, if you elected to skip the “KDE” disk set,
KDE will not be offered.

[image: ../Images/slackbook_setup-xwmconfig.png]

The last configuration step is setting a root password. The root
user is the “super user” on Slackware and all other UNIX-like
operating systems. Think of root as the Administrator user. root
knows all, sees all, and can do all, so setting a strong root
password is just common sense.

With this last step complete, you can now exit the Slackware
installer and reboot with a good old CTRL +
ALT + DELETE. Remove the
Slackware installation disk, and if you performed all the steps
correctly, your computer will boot into your new Slackware
linux system. If something went wrong, you probably skipped the
LILO configuration step or made an error there somehow. Thankfully,
the next chapter should help you sort that out.

When you have rebooted into your new Slackware installation, the
very first step you should take is to create a user. By
default, the only user that exists after the install is the root
user, and it's dangerous to use your computer as root, given that
there are no restrictions as to what that user can do.

The quickest and easiest way to create a normal user for yourself
is to log in as root with the root password that you created at
the end of the intallation process, and then issue the
adduser command. This will interactively assist
you in creating a user; see User and Group Management|the section called “Managing Users and Groups"[bookmark: backto_29][29] for more
information.

Chapter Navigation

Previous Chapter: Introduction[bookmark: backto_30][30]

Next Chapter: Booting[bookmark: backto_31][31]

Sources

	 Original source: http://www.slackbook.org/beta[bookmark: backto_32][32]

	 Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook,
install,
setup,
partitioning

Booting

Ok, now that you've gotten Slackware installed on your system, you
should learn exactly what controls the boot sequence of your machine,
and how to fix it should you manage to break it somehow. If you use Linux
long enough, sooner or later you will make a mistake that breaks your
bootloader. Fortunately, this doesn't require a reinstall to fix. Unlike
many other operating systems that hide the underlying details of how they
work, Linux (and in particular, Slackware) gives you full control over
the boot process. Simply by editing a configuration file or two and
re-running the bootloader installer, you can quickly and easily change
(or break) your system. Slackware even makes it easy to dual-boot
multiple operating systems, such as other Linux distributions or Microsoft
Windows.

mkinitrd

Before we go any further, a quick discussion on the Linux kernel is
warranted. Slackware Linux includes at least two, but sometimes more,
different kernels. While they are all compiled from the same source
code, and hence are the “same”, they are not identical. Depending on
your architecture and Slackware version, the installer may have loaded
your system with several kernels. There are kernels for single-processor
systems and kernels for multi-processor systems (on 32bit Slackware).
In the old days, there were lots of kernels for installing on many different
kinds of hard drive controllers. More importantly for our discussion,
there are “huge” kernels and “generic” kernels.

If you look inside your /boot directory, you'll
see the various kernels installed on your system.

darkstar:~# ls -1 /boot/vmlinuz*
/boot/vmlinuz-huge-2.6.29.4
/boot/vmlinuz-generic-2.6.29.4

Here you can see that I have two kernels installed,
vmlinuz-huge-2.6.29.4 and
vmlinuz-generic-2.6.29.4. Each Slackware release
includes different kernel versions and sometimes even slightly
different names, so don't be alarmed if what you see doesn't exactly
match what I have listed here.

Huge kernels are exactly what you might think; they're huge. However,
that does NOT mean that they have all of the possible drivers and such
compiled into them. Instead, these kernels are made to boot (and run) on
every conceivable computer on which Slackware is supported (there may very
well be a few out there that won't boot/work with them though). They most
certainly contain support for hardware your machine does not (and never
will) have, but that shouldn't concern you. These kernels are included for
several reasons, but probably the most important is their use by Slackware's
installer - these are the kernels that the Slackware installation disks run.
If you chose to let the installer configure your bootloader for you, it
chooses to use these kernels due to the incredible variety of hardware they
support. In contrast, the generic kernels support very little hardware
without the use of external modules. If you want to use one of the generic
kernels, you'll need to make use of something called an initrd, which is
created using the mkinitrd(8) utility.

So why should you use a generic kernel? Currently the Slackware
development team recommends use of a generic kernel for a variety of
reasons. Perhaps the most obvious is size. The huge kernels are
currently about twice the size of the generic kernels before they are
uncompressed and loaded into memory. If you are running an older
machine, or one with some small ammount of RAM, you will appreciate the
savings the generic kernels offer you. Other reasons are somewhat more
difficult to quantify. Conflicts between drivers included in the huge
kernels do appear from time to time, and generally speaking, the huge
kernels may not perform as well as the generic ones. Also, by using the
generic kernels, special arguments can be passed to hardware drivers
seperately, rather than requiring these options be passed on the kernel
command line. Some of the tools included with Slackware work better if
your kernel uses some drivers as modules rather than statically building
them into the kernel. If you're having trouble understanding this, don't
be alarmed: just think “huge kernel = good, generic kernel = better”.

Unfortunately, using the generic kernels isn't as straightforward as
using the huge kernels. In order for the generic kernel to boot your
system, you must also include a few basic modules in an initird.
Modules are pieces of compiled kernel code that can be inserted or removed
from a running kernel (ideally using modprobe(8).
This makes the system somewhat more flexible at the cost of a tiny bit of
added complexity. You might find it easier to think of modules as device
drivers, at least for this section. Typically you will need to add the
module for whatever filesystem you chose to use for your root partition
during the installer, and if your root partition is located on a SCSI disk
or RAID controller, you'll need to add those modules as well. Finally, if
you're using software RAID, disk encryption, or LVM, you'll also need to
create an initrd regardless of whether you're using the generic kernel or not.

An initrd is a compressed cpio(1) archive, so
creating one isn't very straightforward. Fortunately for you, Slackware
includes a tool that makes this very easy:
mkinitrd. A full discussion of
mkinitrd is a bit beyond the scope of this
book, but we'll show you all the highlights. For a more complete
explanation, check the manpage or run
mkinitrd with the –help
argument.

darkstar:~# mkinitrd --help
mkinitrd creates an initial ramdisk (actually an initramfs cpio+gzip
archive) used to load kernel modules that are needed to mount the
root filesystem, or other modules that might be needed before the
root filesystem is available. Other binaries may be added to the
initrd, and the script is easy to modify. Be creative. :-)
.... many more lines deleted

When using mkinitrd, you'll need to know a
few items of information: your root partition, your root filesystem,
any hard disk controllers you're using, and whether or not you're using
LVM, software RAID, or disk encryption. Unless you're using some kind
of SCSI controller (and have your root partition located on the SCSI
controller), you should only need to know your root filesystem and
partition type. Assuming you've booted into your Slackware installation
using the huge kernel, you can easily find this information with the
mount command or by viewing the contents of
/proc/mounts.

darkstar:~# mount
/dev/sda1 on / type ext4 (rw,barrier=1,data=ordered)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
usbfs on /proc/bus/usb type usbfs (rw)
/dev/sda2 on /home type jfs (rw)
tmpfs on /dev/shm type tmpfs (rw)

In the example provided, you can see that the root partition is located
on /dev/sda1 and is an ext4 type partition. If we
want to create an initrd for this system, we simply need to tell this
information to mkinitrd.

darkstar:~# mkinitrd -f ext4 -r /dev/sda1

Note that in most cases, mkinitrd is smart
enough to determine this information on its own, but it never hurts to
specify it manually. Now that we've created our initrd, we simply need
to tell LILO where to find it. We'll focus on that in the next section.

Looking up all those different options for
mkinitrd or worse, memorizing them, can be a
real pain though, especially if you try out different kernels
consistently. This became tedious for the Slackware development team,
so they came up with a simple configuration file,
mkinitrd.conf(5). You can find a sample file that
can be easily customized for your system at
/etc/mkinitrd.conf.sample directory. Here's mine.

darkstar:~# >/prompt>cat /etc/mkinitrd.conf.sample
See "man mkinitrd.conf" for details on the syntax of this file
#
SOURCE_TREE="/boot/initrd-tree"
CLEAR_TREE="0"
OUTPUT_IMAGE="/boot/initrd.gz"
KERNEL_VERSION="$(uname -r)"
#KEYMAP="us"
MODULE_LIST="ext3:ext4:jfs"
#LUKSDEV="/dev/hda1"
ROOTDEV="/dev/sda1
ROOTFS="ext4"
#RESUMEDEV="/dev/hda2"
#RAID="0"
LVM="1"
#WAIT="1"

For a complete description of each of these lines and what they do,
you'll need to consult the man page for mkinitrd.conf.
Copy the sample file to to /etc/mkinitrd.conf and
edit it as desired. Once it is setup properly, you need only run
mkinitrd with the -F argument.
A proper initrd file will be constructed and installed for you without
you having to remember all those obscure arguments.

If you're unsure what options to specify in the configuration file or
on the command-line, there is one final option. Slackware includes a
nifty little utility that can tell what options are required for your
currently running kernel
/usr/share/mkinitrd/mkinitrd_command_generator.sh.
When you run this script, it will generate a command line for
mkinitrd that should work
for your computer, but you may wish to check everything anyway.

darkstar:~# /usr/share/mkinitrd/mkinitrd_command_generator.sh
mkinitrd -c -k 2.6.33.4 -f ext3 -r /dev/sda3 -m \
usbhid:ehci-hcd:uhci-hcd:ext3 -o /boot/initrd.gz

LILO

LILO is the Linux Loader and is currently the default boot loader
installed with Slackware Linux. If you've used other Linux
distributions before, you may be more familiar with GRUB. If you prefer
to use GRUB instead, you can easily find it in the
extra/ directory on one of your Slackware CDs.
However, since LILO is the default Slackware bootloader, we'll focus
exclusively on it.

Configuring LILO can be a little daunting for new users, so Slackware
comes with a special setup tool called liloconfig.
Normally, liloconfig is first run by the
installer, but you can run it at any time from a terminal.

[image: ../Images/slackbook_setup-lilo.png]

liloconfig has two modes of operation:
simple and expert. The “simple” mode tries to automatically configure
lilo for you. If Slackware is the only operating system installed on
your computer, the “simple” mode will almost always do the right thing
quickly and easily. It is also very good at detecting Windows
installations and adding them to /etc/lilo.conf
so that you can choose which operating system to boot when you
turn your computer on.

In order to use “expert” mode, you'll need to know Slackware's root
partition. You can also setup other linux operating systems if you know
their root partitions, but this may not work as well as you expect.
liloconfig will try to boot each linux
operating system with Slackware's kernel, and this is probably not what
you want. Fortunately, setting up Windows partitions in expert mode is
trivial. One hint when using expert mode: you should almost always
install LILO to the Master Boot Record (MBR). Once upon a time, it was
recommended to install the boot loader onto the root partition and set
that partition as bootable. Today, LILO has matured greatly and is safe
to install on the MBR. In fact, you will encounter fewer problems if
you do so.

liloconfig is a great way to quickly setup
your boot loader, but if you really need to know what's going on, you'll
need to look at LILO's configuration file:
lilo.conf(5) under the /etc
directory. /etc/lilo.conf is separated into
several sections. At the top, you'll find a “global” section where you
specify things like where to install LILO (generally the MBR), any
special images or screens to show on boot, and the timeout after which
LILO will boot the default operating system. Here's what the global
section of my lilo.conf file looks like in part.

LILO configuration file
boot = /dev/sda
bitmap = /boot/slack.bmp
bmp-colors = 255,0,255,0,255,0
bmp-table = 60,6,1,16
bmp-timer = 65,27,0,255
append=" vt.default_utf8=0"
prompt
timeout = 50
VESA framebuffer console @ 1024x768x256
vga = 773
.... many more lines ommitted

For a complete listing of all the possible LILO options, you should
consult the man page for lilo.conf. We'll
briefly discuss the most common options in this document.

The first thing that should draw your attention is the “boot” line. This
determines where the bootloader is installed. In order to install to
the Master Boot Record (MBR) of your hard drive, you simply list the hard
drive's device entry on this line. In my case, I'm using a SATA hard drive
that shows up as a SCSI device /dev/sda. In order
to install to the boot block of a partition, you'll have to list the
partition's device entry. For example, if you are installing to the first
partition on the only SATA hard drive in your computer, you would probably
use /dev/sda1.

The “prompt” option simply tells LILO to ask (prompt) you for which
operating system to boot. Operating systems are each listed in their
own section deeper in the file. We'll get to them in a minute. The
timeout option tells LILO how long to wait (in tenths of seconds)
before booting the default OS. In my case, this is 5 seconds. Some
systems seem to take a very long time to display the boot screen, so
you may need to use a larger timeout value than I have set. This is in
part why the simple LILO installation method utilizes a very long
timeout (somewhere around 2 whole minutes). The append line in my case
was set up by liloconfig. You may (and
probably should) see something similar when looking at your own
/etc/lilo.conf. I won't go into the details of why
this line is needed, so you're just going to have to trust me that things
work better if it is present. :^)

Now that we've looked into the global section, let's take a look at the
operating systems section. Each linux operating system section begins
with an “image” line. Microsoft Windows operating systems are specified
with an “other” line. Let's take a look at a sample
/etc/lilo.conf that boots both Slackware and
Microsoft Windows.

LILO configuration file
... global section ommitted
Linux bootable partition config begins
image = /boot/vmlinuz-generic-2.6.29.4
root = /dev/sda1
initrd = /boot/initrd.gz
label = Slackware64
read-only
Linux bootable partition config ends
Windows bootable partition config begins
other = /dev/sda3
label = Windows
table = /dev/sda
Windows bootable partition config ends

For Linux operating systems like Slackware, the image line specifies
which kernel to boot. In this case, we're booting
/boot/vmlinuz-generic-2.6.29.4. The remaining
sections are pretty self-explanatory. They tell LILO where to find the
root filesystem, what initrd (if any) to use, and to initially mount
the root filesystem read-only. That initrd line is very important for
anyone running a generic kernel or using LVM or software RAID. It
tells LILO (and the kernel) where to find the initrd you created using
mkinitrd.

Once you've gotten /etc/lilo.conf set up for your
machine, simply run lilo(8) to install it.
Unlike GRUB and other bootloaders, LILO requires you re-run
lilo anytime you make changes to its
configuration file, or else the new (changed) bootloader image will
not be installed, and those changes will not be reflected.

darkstar:~# lilo
Warning: LBA32 addressing assumed
Added Slackware *
Added Backup
6 warnings were issued.

Don't be too scared by many of the warnings you may see when running
lilo. Unless you see a fatal error, things
should be just fine. In particular, the LBA32 addressing warning is
commonplace.

Dual Booting

A bootloader (like LILO) is a very flexible thing, since it exists
only to determine which hard drive, partition, or even a specific
kernel on a partition to boot. This inherently suggests a choice
when booting, so the idea of having more than one operating system
on a computer comes very naturally to a LILO or GRUB user.

People “dual boot” for a number of reasons; some people want
to have a stable Slackware install on one partition or drive and a
development sandbox on another, other people might want to have
Slackware on one and another Linux or BSD distribution on another,
and still other people may have Slackware on one partition and a
proprietary operating system (for work or for that one application
that Linux simply cannot offer) on the other.

Dual booting should not be taken lightly, however, since it usually
means that you'll now have two different operating systems
attempting to manage the bootloader. If you dual boot, the
likelihood of one OS over-writing or updating the bootloader entries
without your direct intervention is great; if this happens, you'll
have to modify GRUB or LILO manually so you can get into each OS.

There are two ways to dual (or multi) boot; you can put each
operating system on its own hard drive (common on a desktop, with
their luxury of having more than one drive bay) or each operating
system on its own partition (common on a laptop where only one
physical drive is present).

Dual Booting with Partitions

In order to set up a dual-boot system with each operating system on
its own partition, you must first create partitions. This is easiest
if done prior to installing the first operating system, in which
case it's a simple case of pre-planning and carving up your hard
drive as you feel necessary. See the section called “Partitioning”[bookmark: backto_33][33] for
information on using the fdisk or
cfdisk partitioning applications.

If you're dual booting two Linux distributions, it is inadvisable
to attempt to share a /home directory between the
systems. While it is technically possible, doing so will increase
the chance of your personal configurations from becoming mauled by
competing desktop environments or versions.

The shell

So you've installed Slackware and you're staring at a terminal prompt,
what now? Now would be a good time to learn about the basic command
line tools. And since you're staring at a blinking curser, you
probably need a little assistance in knowing how to get around, and
that is what this chapter is all about.

System Documentation

Your Slackware Linux system comes with lots of built-in documentation
for nearly every installed application. Perhaps the most common
method of reading system documentation is
man(1). man
(short for manual) will bring up the included
man-page for any application, system call, configuration file, or
library you tell it too. For example, man man
will bring up the man-page for man itself.

Unfortunately, you may not always know what application you need to use
for the task at hand. Thankfully, man has
built-in search abilities. Using the -k switch
will cause man to search for every man-page
that matches your search terms.

The man-pages are organized into groups or sections by their content
type. For example, section 1 is for user applications.
man will search each section in order and
display the first match it finds. Sometimes you will find that a
man-page exists in more than one section for a given entry. In that
case, you will need to specify the exact section to look in. In this
book, all applications and a number of other things will have a number
on their right-hand side in parenthesis. This number is the man page
section where you will find information on that tool.

darkstar:~$ man -k printf
printf (1) - format and print data
printf (3) - formatted output conversion
darkstar:~$ man 3 printf

Man Page Sections

	 Section 	 Contents

	1	User Commands

	2	System Calls

	3	C Library Calls

	4	Devices

	5	File Formats / Protocols

	6	Games

	7	Conventions / Macro Packages

	8	System Administration

	9	Kernel API Descriptions

	n	“New” - typically used to Tcl/Tk

Dealing with Files and Directories

Listing Files and Directory Contents

ls(1) is used to list files and directories,
their permissions, size, type, inode number, owner and group, and
plenty of additional information. For example, let's list what's in
the / directory for your new Slackware Linux system.

darkstar:~$ ls /
bin/ dev/ home/ lost+found/ mnt/ proc/ sbin/ sys/ usr/
boot/ etc/ lib/ media/ opt/ root/ srv/ tmp/ var/

Notice that each of the listings is a directory. These are
easily distinguished from regular files due to the trailing /; standard
files do not have a suffix. Additionally, executable files will have an
asterisk suffix. But ls can do so much
more. To get a view of the permissions of a file or directory, you'll
need to do a “long list”.

darkstar:~$ ls -l /home/alan/Desktop
-rw-r--r-- 1 alan users 15624161 2007-09-21 13:02 9780596510480.pdf
-rw-r--r-- 1 alan users 3829534 2007-09-14 12:56 imgscan.zip
drwxr-xr-x 3 alan root 168 2007-09-17 21:01 ipod_hack/
drwxr-xr-x 2 alan users 200 2007-12-03 22:11 libgpod/
drwxr-xr-x 2 alan users 136 2007-09-30 03:16 playground/

A long listing lets you view the permisions, user and group ownership,
file size, last modified date, and of course, the file name itself.
Notice that the first two entires are files, and the last three are
directories. This is denoted by the very first character on the line.
Regular files get a “-”; directories get a “d”. There are several
other file types with their own denominators. Symbolic links for
example will have an “l”.

Lastly, we'll show you how to list dot-files, or hidden files. Unlike
other operating systems such as Microsoft Windows, there is no special
property that differentiates “hidden” files from “unhidden” files. A
hidden file simply begins with a dot. To display these files along
with all the others, you just need to pass the -a argument to
ls.

darkstar:~$ ls -a
.xine/ .xinitrc-backup .xscreensaver .xsession-errors SBo/
.xinitrc .xinitrc-xfce .xsession .xwmconfig/ Shared/

You also likely noticed that your files and directories appear in
different colors. Many of the enhanced features of
ls such as these colors or the trailing
characters indicating file-type are special features of the
ls program that are turned on by passing
various arguments. As a convienience, Slackware sets up
ls to use many of these optional arguments
by default. These are controlled by the LS_OPTIONS and LS_COLORS
environment variables. We will talk more about environment variables
in chapter 5.

Moving Around the Filesystem

cd is the command used to change
directories. Unlike most other commands, cd
is actually not it's own program, but is a shell built-in. Basically,
that means cd does not have its own man
page. You'll have to check your shell's documentation for more details
on the cd you may be using. For the most
part though, they all behave the same.

darkstar:~$ cd /
darkstar:/$ls
bin/ dev/ home/ lost+found/ mnt/ proc/ sbin/ sys/ usr/
boot/ etc/ lib/ media/ opt/ root/ srv/ tmp/ var/
darkstar:/$cd /usr/local
darkstar:/usr/local$

Notice how the prompt changed when we changed directories? The default
Slackware shell does this as a quick, easy way to see your current
directory, but this is not actually a function of
cd. If your shell doesn't operate in this
way, you can easily get your current working directory with the
pwd(1) command. (Most UNIX shells have
configurable prompts that can be coaxed into providing this same
functionality. In fact, this is another convience setup in the default
shell for you by Slackware.)

darkstar:~$ pwd
/usr/local

File and Directory Creation and Deletion

While most applications can and will create their own files and
directories, you'll often want to do this on your own. Thankfully,
it's very easy using touch(1) and
mkdir(1).

touch actually modifies the timestamp on a
file, but if that file doesn't exist, it will be created.

darkstar:~/foo$ ls -l
-rw-r--r-- 1 alan users 0 2012-01-18 15:01 bar1
darkstar:~/foo$ touch bar2
-rw-r--r-- 1 alan users 0 2012-01-18 15:01 bar1
-rw-r--r-- 1 alan users 0 2012-01-18 15:05 bar2
darkstar:~/foo$ touch bar1
-rw-r--r-- 1 alan users 0 2012-01-18 15:05 bar1
-rw-r--r-- 1 alan users 0 2012-01-18 15:05 bar2

Note how bar2 was created in our second command,
and the third command simpl updated the timestamp on
bar1

mkdir is used for (obviously enough) making
directories. mkdir foo will create the
directory “foo” within the current working directory. Additionally,
you can use the -p argument to create any
missing parent directories.

darkstar:~$ mkdir foo
darkstar:~$ mkdir /slack/foo/bar/
mkdir: cannot create directory `/slack/foo/bar/': No such file or directory
darkstar:~$ mkdir -p /slack/foo/bar/

In the latter case, mkdir will first create
“/slack”, then “/slack/foo”, and finally “/slack/foo/bar”. If you
failed to use the -p argument,
mkdir would fail to create “/slack/foo/bar”
unless the first two already existed, as you saw in the example.

Removing a file is as easy as creating one. The
rm(1) command will remove a file
(assuming of course
that you have permission to do this). There are a few very common
arguments to rm. The first is
-f and is used to force the removal of a file
that you may lack explicit permission to delete. The
-r argument will remove directories and their
contents recursively.

There is another tool to remove directories, the humble
rmdir(1). rmdir
will only remove directories that are empty, and complain noisely about
those that contain files or sub-directories.

darkstar:~$ ls
foo_1/ foo_2/
darkstar:~$ ls foo_1
bar_1
darkstar:~$ rmdir foo_1
rmdir: foo/: Directory not empty
darkstar:~$ rm foo_1/bar
darkstar:~$ rmdir foo_1
darkstar:~$ ls foo_2
bar_2/
darkstar:~$ rm -fr foo_2
darkstar:~$ ls

Archive and Compression

Everyone needs to package a lot of small files together for easy
storage from time to time, or perhaps you need to compress very large
files into a more manageable size? Maybe you want to do both of those
together? Thankfully there are several tools to do just that.

zip and unzip

You're probably familiar with .zip files. These are compressed files
that contain other files and directories. While we don't normally use
these files in the Linux world, they are still commonly used by other
operating systems, so we occasionally have to deal with them.

In order to create a zip file, you'll (naturally) use the
zip(1) command. You can compress either
files or directories (or both) with zip, but
you'll have to use the -r argument for recursive action in
order to deal with directories.

darkstar:~$ zip -r /tmp/home.zip /home
darkstar:~$ zip /tmp/large_file.zip /tmp/large_file

The order of the arguments is very important. The first filename must
be the zip file to create (if the .zip extension is ommitted,
zip will add it for you) and the rest are
files or directories to be added to the zip file.

Naturally, unzip(1) will decompress a zip
archive file.

darkstar:~$ unzip /tmp/home.zip

gzip

One of the oldest compression tools included in Slackware is
gzip(1), a compression tool that is only
capable or operating on a single file at a time. Whereas
zip is both a compression and an archival
tool, gzip is only capable of compression.
At first glance this seems like a draw-back, but it is really a
strength. The UNIX philosophy of making small tools that do their small
jobs well allows them to be combined in myriad ways. In order to
compress a file (or multiple files), simply pass them as arguments to
gzip. Whenever
gzip compresses a file, it adds a .gz
extension and removes the original file.

darkstar:~$ gzip /tmp/large_file

Decompressing is just as straight-forward with
gunzip which will create a new uncompressed
file and delete the old one.

darkstar:~$ gunzip /tmp/large_file.gz
darkstar:~$ ls /tmp/large_file*
/tmp/large_file

But suppose we don't want to delete the old compressed file, we just
want to read its contents or send them as input to another program?
The zcat program will read the gzip file,
decompress it in memory, and send the contents to the standard output
(the terminal screen unless it is redirected, see the section called “Input and Output Redirection”[bookmark: backto_39][39] for more details on output redirection).

darkstar:~$ zcat /tmp/large_file.gz
Wed Aug 26 10:00:38 CDT 2009
Slackware 13.0 x86 is released as stable! Thanks to everyone who helped
make this release possible -- see the RELEASE_NOTES for the credits.
The ISOs are off to the replicator. This time it will be a 6 CD-ROM
32-bit set and a dual-sided 32-bit/64-bit x86/x86_64 DVD. We're taking
pre-orders now at store.slackware.com. Please consider picking up a copy
to help support the project. Once again, thanks to the entire Slackware
community for all the help testing and fixing things and offering
suggestions during this development cycle.

bzip2

One alternative to gzip is the
bzip2(1) compression utility which works in
almost the exact same way. The advantage to
bzip2 is that it boasts greater compression
strength. Unfortunately, achieving that greater compression is a slow
and CPU-intensive process, so bzip2
typically takes much longer to run than other alternatives.

XZ / LZMA

The latest compression utility added to Slackware is
xz, which implements the LZMA compression
algorithm. This is faster than bzip2 and
often compresses better as well. In fact, its blend of speed and
compression strength caused it to replace
gzip as the compression scheme of choice for
Slackware. Unfortunately, xz does not have
a man page at the time of this writing, so to view available options,
use the –help argument. Compressing files is accomplished
with the -z argument, and decompression with -d.

darkstar:~$ xz -z /tmp/large_file

tar

So great, we know how to compress files using all sorts of programs,
but none of them can archive files in the way that
zip does. That is until now. The Tape
Archiver, or tar(1) is the most frequently
used archival program in Slackware. Like other archival programs,
tar generates a new file that contains other
files and directories. It does not compress the generated file (often
called a “tarball”) by default; however, the version of
tar included in Slackware supports a variety
of compression schemes, including the ones mentioned above.

Invoking tar can be as easy or as
complicated as you like. Typically, creating a tarball is done with the
-cvzf arguments. Let's look at these in depth.

tar Arguments

	 Argument 	 Meaning

	c	Create a tarball

	x	Extract the contents of a tarball

	t	Display the contents of a tarball

	v	Be more verbose

	z	Use gzip compression

	j	Use bzip2 compression

	J	Use LZMA compression

	p	Preserve permissions

tar requires a bit more precision than other
applications in the order of its arguments. The -f argument
must be present when reading or writing to a file for example, and the
very next thing to follow must be the filename. Consider the following
examples.

darkstar:~$ tar -xvzf /tmp/tarball.tar.gz
darkstar:~$ tar -xvfz /tmp/tarball.tar.gz

Above, the first example works as you would expect, but the second
fails because tar has been instructed to
open the z file rather than the expected
/tmp/tarball.tar.gz.

Now that we've got our arguments straightened out, lets look at a few
examples of how to create and extract tarballs. As we've noted, the
-c argument is used to create tarballs and -x
extracts their contents. If we want to create or extract a compressed
tarball though, we also have to specify the proper compression to use.
Naturally, if we don't want to compress the tarball at all, we can
leave these options out. The following command creates a new tarball
using the gzip compression alogrithm. While
it's not a strict requirement, it's also good practice to add the .tar
extension to all tarballs as well as whatever extension is used by the
compression algorithm.

darkstar:~$ tar -czf /tmp/tarball.tar.gz /tmp/tarball/

Reading Documents

Traditionally, UNIX and UNIX-like operating systems are filled with
text files that at some point in time the system's users are going to
want to read. Naturally, there are plenty of ways of reading these
files, and we'll show you the most common ones.

In the early days, if you just wanted to see the contents of a file
(any file, whether it was a text file or some binary program) you would
use cat(1) to view them.
cat is a very simple program, which takes
one or more files, concatenates them (hence the name) and sends them to
the standard output, which is usually your terminal screen. This was
fine when the file was small and wouldn't scroll off the screen, but
inadequate for larger files as it had no built-in way of moving within
a document and reading it a paragraph at a time. Today,
cat is still used quite extensively, but
predominately in scripts or for joining two or more files into one.

darkstar:~$ cat /etc/slackware-version
Slackware 14.0

Given the limitations of cat some very
intelligent people sat down and began to work on an application to let
them read documents one page at a time. Naturally, such applications
began to be known as “pagers”. One of the earliest of these was
more(1), named because it would let you see
“more” of the file whenever you wanted.

more

more will display the first few lines of a
text file until your screen is full, then pause. Once you've read
through that screen, you can proceed down one line by pressing ENTER,
or an entire screen by pressing SPACE, or by a
specified number of lines by typing a number and then the
SPACE bar. more is also
capable of searching through a text file for keywords; once you've
displayed a file in more, press the /
key and enter a keyword. Upon pressing ENTER, the
text will scroll until it finds the next match.

This is clearly a big improvement over
cat, but still suffers from some annoying
flaws; more is not able to scroll back up
through a piped file to allow you to read something you might have
missed, the search function does not highlight its results, there is
no horizontal scrolling, and so on. Clearly a better solution is
possible.

The Bourne Again Shell

What Is A Shell?

Yeah, what exactly is a shell? Well, a shell is basically a
command-line user environment. In essence, it is an application that
runs when the user logs in and allows him to run additional
applications. In some ways it is very similar to a graphical user
interface, in that it provides a framework for executing commands and
launching programs. There are many shells included with a full install
of Slackware, but in this book we're only going to discuss
bash(1), the Bourne Again Shell. Advanced
users might want to consider using the powerful
zsh(1), and users familiar with older UNIX
systems might appreciate ksh. The truly
masochistic might choose the csh, but new
users should stick to bash.

Environment Variables

All shells make certain tasks easier for the user by keeping track of
things in environment variables. An environment variable is simply a
shorter name for some bit of information that the user wishes to store
and make use of later. For example, the environment variable PS1 tells
bash how to format its prompt. Other
variables may tell applications how to run. For example, the LESSOPEN
variable tells less to run that handy
lesspipe.sh preprocessor we talked about, and
LS_OPTIONS tuns on color for ls.

Setting your own envirtonment variables is easy.
bash includes two built-in functions for
handling this: set and
export. Additionally, an environment
variable can be removed by using unset.
(Don't panic if you accidently unset an environment variable and don't
know what it would do. You can reset all the default variables by
logging out of your terminal and logging back in.) You can reference a
variable by placing a dollar sign ($) in front of it.

darkstar:~$ set FOO=bar
darkstar:~$ echo $FOO
bar

The primary difference between set and
export is that
export will (naturally) export the variable
to any sub-shells. (A sub-shell is simply another shell running inside
a parent shell.) You can easily see this behavior when working with
the PS1 variable that controls the bash
prompt.

darkstar:~$ set PS1='FOO '
darkstar:~$ export PS1='FOO '
FOO

There are many important environment variables that
bash and other shells use, but one of the
most important ones you will run across is PATH. PATH is simply a list
of directories to search through for applications. For example,
top(1) is located at
/usr/bin/top. You could run it simply by
specifying the complete path to it, but if
/usr/bin is in your PATH variable,
bash will check there if you don't specify a
complete path one your own. You will most likely first notice this
when you attempt to run a program that is not in your PATH as a normal
user, for instance, ifconfig(8).

darkstar:~$ ifconfig
bash: ifconfig: command not found
darkstar:~$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:/usr/games:/opt/www/htdig/bin:.

Above, you see a typical PATH for a mortal user. You can change it on
your own the same as any other environment variable. If you login as
root however, you'll see that root has a different PATH.

darkstar:~$ su -
Password:
darkstar:~# echo $PATH
/usr/local/sbin:/usr/sbin:/sbin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:/usr/games:/opt/www/htdig/bin

Wildcards

Wildcards are special characters that tell the shell to match certain
criteria. If you have experience with DOS, you'll recognize * as a
wildcard that matches anything. bash makes
use of this wildcard and several others to enable you to easily define
exactly what you want to do.

This first and most common of these is, of course, *. The asterisk
matches any character or combination of characters, including none.
Thus b* would match any files named b, ba, bab,
babc, bcdb, and so forth. Slightly less common is the ?. This
wildcard matches one instance of any character, so
b? would match ba and bb, but not b or bab.

darkstar:~$ touch b ba bab
darkstar:~$ ls *
b ba bab
darkstar:~$ ls b?
ba

No, the fun doesn't stop there! In addition to these two we also have
the bracket pair “[]” which allows us to fine tune exactly what we
want to match. Whenever bash see the
bracket pair, it substitutes the contents of the bracket. Any
combination of letters or numbers may be specified in the bracket as
long as they are comma seperated. Additionally, ranges of numbers and
letters may be specified as well. This is probably best shown by
example.

darkstar:~$ ls a[1-4,9]
a1 a2 a3 a4 a9

Since Linux is case-sensitive, capital and lower-case letters are
treated differently. All capital letters come before all lower-case
letters in “alphabetical” order, so when using ranges of capital and
lower-case letters, make sure to get them right.

darkstar:~$ ls 1[W-b]
1W 1X 1Y 1Z 1a 1b
darkstar:~$ ls 1[w-B]
/bin/ls: cannot access 1[b-W]: No such file or directory

In the second example, 1[b-W] isn't a valid range, so the shell treats
it as a filename, and since that file doesn't exist,
ls tells you so.

Tab Completion

Still think there's entirely too much work involved with using
wildcards? You're right. There's an even easier way when you're
dealing with long filenames: tab completion. Tab completion enables
you to type just enough of the filename to uniquely identify it, then
by hitting the TAB key, bash will fill in
the rest for you. Even if you haven't typed in enough text to uniquely
identify a filename, the shell will fill in as much as it can for you.
Hitting TAB a second time will make it display a list of all possible
matches for you.

Input and Output Redirection

One of the defining features of Linux and other UNIX-like operating
systems is the number of small, relatively simple applications and the
ability to stack them together to create complex systems. This is
achieved by redirecting the output of one program to another, or by
drawing input from a file or second program.

To get started, we're going to show you how to redirect the output of a
program to a file. This is easily done with the '>' character. When
bash sees the '>' character, it redirects
all of the standard output (also known as stdout) to whatever file name
follows.

darkstar:~$ echo foo
foo
darkstar:~$ echo foo > /tmp/bar
darkstar:~$ cat /tmp/bar
foo

In this example, we show you what echo would
do if its stdout was not redirected to a file, then we re-direct it to
the /tmp/bar file. If /tmp/bar
does not exist, it is created and the output from
echo is placed within it. If
/tmp/bar did exist, then its contents are
over-written. This might not be the best idea if you want to keep
those contents in place. Thankfully, bash
supports '»' which will append the output to the file.

darkstar:~$ echo foo
foo
darkstar:~$ echo foo > /tmp/bar
darkstar:~$ cat /tmp/bar
foo
darkstar:~$ echo foo2 >> /tmp/bar
darkstar:~$ cat /tmp/bar
foo
foo2

You can also re-direct the standard error (or stderr) to a file. This
is slightly different in that you must use '2>' instead of just '>'.
(Since bash can re-direct input, stdout, and
stderr, each must be uniquely identifiable. 0 is input, 1 is stdout,
and 2 is stderr. Unless one of these is specified,
bash will make its best guess as to what you
actually meant, and assumed anytime you use '>' you only want to
redirect stdout. 1> would have worked just as well.)

darkstar:~$ rm bar
rm: cannot remove `bar': No such file or directory
darkstar:~$ rm bar 2> /tmp/foo
darkstar:~$ cat /tmp/foo
rm: cannot remove `bar': No such file or directory

You may also redirect the standard input (known as stdin) with the
'<'
character, though it's not used very often.

darkstar:~$ fromdos < dosfile

Finally, you can actually redirect the output of one program as input
to another. This is perhaps the most useful feature of
bash and other shells, and is accomplished
using the '|' character. (This character is referred to as 'pipe'.
If you here some one talk of piping one program to another, this is
exactly what they mean.)

darkstar:~$ ps auxw | grep getty
root 2632 0.0 0.0 1656 532 tty2 Ss+ Feb21 0:00 /sbin/agetty 38400 tty2 linux
root 3199 0.0 0.0 1656 528 tty3 Ss+ Feb15 0:00 /sbin/agetty 38400 tty3 linux
root 3200 0.0 0.0 1656 532 tty4 Ss+ Feb15 0:00 /sbin/agetty 38400 tty4 linux
root 3201 0.0 0.0 1656 532 tty5 Ss+ Feb15 0:00 /sbin/agetty 38400 tty5 linux
root 3202 0.0 0.0 1660 536 tty6 Ss+ Feb15 0:00 /sbin/agetty 38400 tty6 linux

Task Management

bash has yet another cool feature to offer,
the ability to suspend and resume tasks. This allows you to
temporarily halt a running process, perform some other task, then
resume it or optionally make it run in the background. Upon pressing
CTRL+z, bash will suspend
the running process and return you to a prompt. You can return to that
process later. Additionally, you can suspend multiple processes in
this way indefinitely. The jobs built-in
command will display a list of suspended tasks.

darkstar:~$ jobs
[1]- Stopped vi TODO
[2]+ Stopped vi chapter_05.xml

In order to return to a suspended task, run the
fg built-in to bring the the most recently
suspended task back into the foreground. If you have mutiple suspended
tasks, you can specify a number as well to bring one of them to the
foreground.

darkstar:~$ fg # "vi TODO"
darkstar:~$ fg 1 # "vi chapter_05.xml"

You can also background a task with (surprize)
bg. This will allow the process to continue
running without maintaining control of your shell. You can bring it
back to the foreground with fg in the same
way as suspended tasks.

Terminals

Slackware Linux and other UNIX-like operating systems allow users to
interact with them in many ways, but the most common, and arguably the
most useful, is the terminal. In the old days, terminals were keyboards
and monitors (sometimes even mice) wired into a mainframe or server via
serial connections. Today however, most terminals are virtual; that is,
they exist only in software. Virtual terminals allow users to connect
to the computer without requiring expensive and often incompatible
hardware. Rather, a user needs only to run the software and they are
presented with a (usually) highly customizable virtual terminal.

The most common virtual terminals (in that every Slackware Linux machine
is going to have at least one) are the gettys.
agetty(8) runs six instances by default on
Slackware, and allows local users (those who can physically sit down in
front of the computer and type at the keyboard) to login and run
applications. Each of these gettys is available on different tty
devices that are accessible seperately by pressing the
ALT key and one of the function keys from
F1 through F6. Using these gettys
allows you to login multiple times, perhaps as different users, and run
applications in those users' shells silmutaneously. This is most
commonly done with servers which do not have
X installed, but can be done on any machine.

On desktops, laptops, and other workstations where the user prefers a
graphical interface provided by X, most
terminals are graphical. Slackware includes many different graphical
terminals, but the most commonly used are KDE's
konsole and XFCE's
Terminal(1) as well as the old standby,
xterm(1). If you are using a graphical interface, check your tool bars
or menus. Each desktop environment or window manager has a virtual
terminal (often called a terminal emulater), and they are all labelled
differently. Typically though, you will find them under a “System”
sub-menu in desktop environments. Executing any of these will give you
a graphical terminal and automatically run your default shell.

Customization

By now you should be pretty familiar with
bash and you may have even noticed some odd
behavior. For example, when you login at the console, you're presented
with a prompt that looks a bit like this.

alan@darkstar:~$

However, sometimes you'll see a much less helpful prompt like this one.

bash-3.1$

The cause here is a special environment variable that controls the
bash prompt. Some shells are considered
“login” shells and others are “interactive” shells, and both types read
different configuration files when started. Login shells read
/etc/profile and
~/.bash_profile when executed. Interactive shells
read ~/.bashrc instead. This has some advantages
for power users, but is a common annoyance for many new users who want
the same environment anytime they execute
bash and don't care about the difference
between login and interactive shells. If this applies to you, simply
edit your own ~/.bashrc file and include the following lines.
(For more information on
the different configuration files used, read the INVOCATION section of
the bash man page.)

~/.bashrc
. /etc/profile
. ~/.bash_profile

When using the above, all your login and interactive shells will have
the same environment settings and behave identically. Now, anytime we
wish to customize a shell setting, we only have to edit
~/.bash_profile for user-specific changes and
/etc/profile for global settings. Let's start by
configuring the prompt.

bash prompts come in all shapes, colors, and
sizes, and every user has their own preferances. Personally, I prefer
short and simple prompts that take up a minimum of space, but I've seen
and used mutli-line prompts many times. One personal friend of mine
even included ASCII-art in his bash prompt. To change your prompt you
need only to change your PS1 variable. By default, Slackware attempts
to configure your PS1 variable thusly:

darkstar:~$ echo $PS1
\u@\h:\w\$

Yes, this tiny piece of funny-looking figures controls your
bash prompt. Basicaly, every character in
the PS1 variable is included in the prompt, unless it is a escaped by a
\, which tells bash to
interpret it. There are many different escape sequences and we can't
discuss them all, but I'll explain these. The first “\u” translates to
the username of the current user. “\h” is the hostname of the machine
the terminal is attached to. “\w” is the current working directory, and
“\$” displays either a # or a $ sign,
depending on whether or not the current user is root. A complete
listing of all prompt escape sequences is listed in the
bash man page under the PROMPTING section.

Since we've gone through all this trouble to discuss the default
prompt, I thought I'd take some time to show you a couple example
prompts and the PS1 variable values needed to use them.

Wed Jan 14 12:08 AM
alan@raven:~$ echo $PS1
\d \@\n\u@\h:\w$
HOST: raven - JOBS: 0 - TTY: 3
alan@~/Desktop/sb_3.0:$ echo $PS1
HOST: \H - JOBS: \j - TTY: \l\n\u@\w:\$

For even more information on configuring your bash prompt, including
information on setting up colored prompts, refer to
/usr/doc/Linux-HOWTOs/Bash-Prompt-HOWTO. After
reading that for a short while, you'll get an idea of just how powerful
your bash prompts can be. I once even had a
prompt that gave me up to date weather information such as temperature
and barometric pressure!

Chapter Navigation

Previous Chapter: Basic Shell Commands[bookmark: backto_43][43]

Next Chapter: Process Control[bookmark: backto_44][44]

Sources

	 Original source: http://www.slackbook.org/beta[bookmark: backto_45][45]

	 Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook,
bash,
task management,
terminals

Process Control

Slackware systems often run hundreds or thousands of programs, each of
which is referred to as a process. Managing these processes is an
important part of system administration. So how exactly do we handle
all of these seperate processes?

ps

The first step in managing processes is figuring out what processes are
currently running. The most popular and powerful tool for this is
ps(1). Without any arguments,
ps won't tell you much information. By
default, it only tells you what processes are running in your currently
active shell. If we want more information, we'll need to look deeper.

darkstar:~$ ps
PID TTY TIME CMD
12220 pts/4 00:00:00 bash
12236 pts/4 00:00:00 ps

Here you can see what processes you are running in your currently
active shell or terminal and only some information is included. The
PID is the “Process ID”; every process is assigned a unique number. The
TTY tells you what terminal device the process is attached to.
Naturally, CMD is the command that was run. You might be a little
confused by TIME though, since it seems to move so slowly. This isn't
the amount of real time the process has been running, but rather the
amount of CPU time the process has consumed. An idle process uses
virtually no CPU time, so this value may not increase quickly.

Viewing only our own processes isn't very much fun, so let's take a
look at all the processes on the system with the -e
argument.

darkstar:~$ ps -e
PID TTY TIME CMD
1 ? 00:00:00 init
2 ? 00:00:00 kthreadd
3 ? 00:00:00 migration/0
4 ? 00:00:00 ksoftirqd/0
7 ? 00:00:11 events/0
9 ? 00:00:01 work_on_cpu/0
11 ? 00:00:00 khelper
102 ? 00:00:02 kblockd/0
105 ? 00:01:19 kacpid
106 ? 00:00:01 kacpi_notify
... many more lines omitted ...

The above example uses the standard ps
syntax, but much more information can be discovered if we use BSD
syntax. In order to do so, we must use the aux argument.

This is distinct from the -aux argument, but in most cases
the two arguments are equivalent. This is a decades-old relic. For more
information, see the man page for ps.

darkstar:~$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 3928 632 ? Ss Apr05 0:00 init [3]
root 2 0.0 0.0 0 0 ? S Apr05 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S Apr05 0:00 [migration/0]
root 4 0.0 0.0 0 0 ? S Apr05 0:00 [ksoftirqd/0]
root 7 0.0 0.0 0 0 ? S Apr05 0:11 [events/0]
root 9 0.0 0.0 0 0 ? S Apr05 0:01 [work_on_cpu/0]
root 11 0.0 0.0 0 0 ? S Apr05 0:00 [khelper]
... many more lines omitted

As you can see, BSD syntax offers much more information, including what
user controls the process and what percentage of RAM and CPU the process
is consuming when ps is run.

To accomplish bits of this, on a per process basis, ps allows
one or more process IDs (PIDs) to be provided in the command line, and has the '-o' flag
to show a particular attribute of the PID.

darkstar:~$ ps -o cmd -o etime $$
CMD ELAPSED
/bin/bash 12:22

What this is displaying, is the PID's command name (cmd), and its elapsed time (etime).
The PID in this example, is a shell variable for the PID of the current shell. So you
can see, in this example, the shell process has existed for 12 minutes, 22 seconds.

Using the pgrep(1) command, this can get more automatable.

darkstar:~$ ps -o cmd -o rss -o vsz $(pgrep httpd)
CMD RSS VSZ
/usr/sbin/httpd -k restart 33456 84816
/usr/sbin/httpd -k restart 33460 84716
/usr/sbin/httpd -k restart 33588 84472
/usr/sbin/httpd -k restart 30424 81608
/usr/sbin/httpd -k restart 33104 84900
/usr/sbin/httpd -k restart 33268 85112
/usr/sbin/httpd -k restart 30640 82724
/usr/sbin/httpd -k restart 15168 67396
/usr/sbin/httpd -k restart 33180 84416
/usr/sbin/httpd -k restart 33396 84592
/usr/sbin/httpd -k restart 32804 84232

In this example, a subshell execution, using pgrep,
is returning the PIDs of any process, whose command
name includes 'httpd'. Then ps displaying the command name,
resident memory size, and virtual memory size.

Finally, ps can also create a process tree.
This shows you which processes have children processes. Ending the
parent of a child process also ends the child. We do this with the
-ejH argument.

darkstar:~$ ps -ejH
... many lines omitted ...
3660 3660 3660 tty1 00:00:00 bash
29947 29947 3660 tty1 00:00:00 startx
29963 29947 3660 tty1 00:00:00 xinit
29964 29964 29964 tty7 00:27:11 X
29972 29972 3660 tty1 00:00:00 sh
29977 29972 3660 tty1 00:00:05 xscreensaver
29988 29972 3660 tty1 00:00:04 xfce4-session
29997 29972 3660 tty1 00:00:16 xfwm4
29999 29972 3660 tty1 00:00:02 Thunar
... many more lines omitted ...

As you can see, ps(1) is an incredibly powerful
tool for determining not only what processes are currently active on
your system, but also for learning lots of important information about
them.

As is the case with many of the applications, there is often several tools
for the job. Similar to the ps -ejH output, but more terse,
is pstree(1). It displays the process tree, a bit more visually.

darkstar:~$ pstree
init-+-atd
|-crond
|-dbus-daemon
|-httpd---10*[httpd]
|-inetd
|-klogd
|-mysqld_safe---mysqld---8*[{mysqld}]
|-screen-+-4*[bash]
| |-bash---pstree
| |-2*[bash---ssh]
| `-bash---irssi
|-2*[sendmail]
|-ssh-agent
|-sshd---sshd---sshd---bash---screen
`-syslogd

kill and killall

Managing processes isn't only about knowing which ones are running, but
also about communicating with them to change their behavior. The most
common way of managing a program is to terminate it. Thus, the tool for
the job is named kill(1). Despite the name,
kill doesn't actually terminate processes,
but sends signals to them. The most common signal is a SIGTERM, which
tells the process to finish up what it is doing and terminate. There
are a variety of other signals that can be sent, but the three most
common are SIGTERM, SIGHUP, and SIGKILL.

What a process does when it receives a signal varies. Most programs
will terminate (or attempt to terminate) whenever they receive any
signal, but there are a few important differences. For starters, the
SIGTERM signal informs the process that it should terminate itself at
its earliest convenience. This gives the process time to finish up any
important activities, such as writing information to the disk, before
it closes. In contrast, the SIGKILL signal tells the process to
terminate itself immediately, no questions asked. This is most useful
for killing processes that are not responding and is sometimes called
the “silver bullet”. Some processes (particularly daemons) capture the
SIGHUP signal and reload their configuration files whenever they
receive it.

In order to signal a process, we first need to know it's PID. You can
get this easily with ps as we discused. In
order to send different signals to a running process, you simply pass
the signal number and -s as an argument. The -l
argument lists all the signals you can choose and their number. You can
also send signals by their name with -s.

darkstar:~$ kill -l
1) SIGHUP	 2) SIGINT	 3) SIGQUIT	 4) SIGILL
5) SIGTRAP	 6) SIGABRT	 7) SIGBUS	 8) SIGFPE
9) SIGKILL	10) SIGUSR1	11) SIGSEGV	12) SIGUSR2
13) SIGPIPE	14) SIGALRM	15) SIGTERM	16) SIGSTKFLT
... many more lines omitted ...
darkstar:~$ kill 1234 # SIGTERM
darkstar:~$ kill -s 9 1234 # SIGKILL
darkstar:~$ kill -s 1 1234 # SIGHUP
darkstar:~$ kill -s HUP 1234 # SIGHUP

Sometimes you may wish to terminate all running processes with a
certain name. You can kill processes by name with
killall(1). Just pass the same arguments to
killall that you would pass to
kill.

darkstar:~$ killall bash # SIGTERM
darkstar:~$ killall -s 9 bash # SIGKILL
darkstar:~$ killall -s 1 bash # SIGHUP
darkstar:~$ killall -s HUP bash # SIGHUP

top

So far we've learned how to look at the active processes for a moment
in time, but what if we want to monitor them for an extended period?
top(1) allows us to do just that. It
displays an ordered list of the processes on your system, along with
vital information about them, and updates periodically. By default,
processes are ordered by their CPU percentage and updates occur every
three seconds.

darkstar:~$ top
top - 16:44:15 up 26 days, 5:53, 5 users, load average: 0.08, 0.03, 0.03
Tasks: 122 total, 1 running, 119 sleeping, 0 stopped, 2 zombie
Cpu(s): 3.4%us, 0.7%sy, 0.0%ni, 95.5%id, 0.1%wa, 0.0%hi, 0.2%si, 0.0%st
Mem: 3058360k total, 2853780k used, 204580k free, 154956k buffers
Swap: 0k total, 0k used, 0k free, 2082652k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1 root 20 0 3928 632 544 S 0 0.0 0:00.99 init
2 root 15 -5 0 0 0 S 0 0.0 0:00.00 kthreadd
3 root RT -5 0 0 0 S 0 0.0 0:00.82 migration/0
4 root 15 -5 0 0 0 S 0 0.0 0:00.01 ksoftirqd/0
7 root 15 -5 0 0 0 S 0 0.0 0:11.22 events/0
9 root 15 -5 0 0 0 S 0 0.0 0:01.19 work_on_cpu/0
11 root 15 -5 0 0 0 S 0 0.0 0:00.01 khelper
102 root 15 -5 0 0 0 S 0 0.0 0:02.04 kblockd/0
105 root 15 -5 0 0 0 S 0 0.0 1:20.08 kacpid
106 root 15 -5 0 0 0 S 0 0.0 0:01.92 kacpi_notify
175 root 15 -5 0 0 0 S 0 0.0 0:00.00 ata/0
177 root 15 -5 0 0 0 S 0 0.0 0:00.00 ata_aux
178 root 15 -5 0 0 0 S 0 0.0 0:00.00 ksuspend_usbd
184 root 15 -5 0 0 0 S 0 0.0 0:00.02 khubd
187 root 15 -5 0 0 0 S 0 0.0 0:00.00 kseriod
242 root 20 0 0 0 0 S 0 0.0 0:03.37 pdflush
243 root 15 -5 0 0 0 S 0 0.0 0:02.65 kswapd0

The man page has helpful details on how to interact with
top such as changing its delay interval, the
order processes are displayed, and even how to terminate processes
right from within top itself.

cron

Ok, so we've learned many different ways of viewing the active
processes on our system and means of signalling them, but what if we
want to run a process periodically? Fortunately, Slackware includes
just the thing, crond(8). cron runs
processes for every user on the schedule that user demands. This makes
it very useful for processes that need to be run periodically, but
don't require full daemonization, such as backup scripts. Every user
gets their own entry in the cron database, so non-root users can
periodically run processes too.

In order to run programs from cron, you'll need to use the
crontab(1). The man page lists a variety of
ways to do this, but the most common method is to pass the
-e argument. This will lock the user's entry in the cron
database (to prevent it from being overwritten by another program),
then open that entry with whatever text editor is specified by the
VISUAL environment variable. On Slackware systems, this is typically
the vi editor. You may need to refer to the
chapter on vi before continuing.

The cron database entries may seem a little archaic at first, but they
are highly flexible. Each uncommented line is processed by
crond and the command specified is run if
all the time conditions match.

darkstar:~$ crontab -e
Keep current with slackware
30 02 * * * /usr/local/bin/rsync-slackware64.sh 1>/dev/null 2>&1

As mentioned before, the syntax for cron entries is a little difficult
to understand at first, so let's look at each part individually. From
left to right, the different sections are: Minute, Hour, Day, Month,
Week Day, and Command. Any asterisk * entry matches
every minute, hour, day, and so on. So from the example above, the
command is “/usr/local/bin/rsync-slackware64.sh 1>/dev/null 2>&1”, and
it runs every weekday or every week of every month at 2:30 a.m.

crond will also e-mail the local user with
any output the command generates. For this reason, many tasks have
their output redirected to /dev/null, a special
device file that immediately discards everything it receives. In order
to make it easier for you to remember these rules, you might wish to
paste the following commented text at the top of your own cron entries.

Redirect everything to /dev/null with:
1>/dev/null 2>&1
#
MIN HOUR DAY MONTH WEEKDAY COMMAND

By default, Slackware includes a number of entries and comments in
root's crontab. These entries make it easier to setup periodic system
tasks by creating a number of directories in /etc
corresponding to how often the tasks should run. Any script placed
within these directories will be run hourly, daily, weekly, or monthly.
The names should be self-explanatory:
/etc/cron.hourly,
/etc/cron.daily,
/etc/cron.weekly, and
/etc/cron.monthly.

Chapter Navigation

Previous Chapter: The Bourne Again Shell[bookmark: backto_46][46]

Next Chapter: The X Window System[bookmark: backto_47][47]

Sources

* Original source: http://www.slackbook.org/beta[bookmark: backto_48][48]

* Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook,
process control,
ps,
kill,
killall,
top,
cron

The X Window System

What Is (And Isn't) X

Eons ago computer terminals came with a screen and a keyboard and not
much else. Mice hadn't come into common use and everything was menu
driven. Then came the Graphical User Interface (GUI) and the world was
changed. Today users are accustomed to moving a mouse around a screen,
clicking on icons and running tasks with fancy images and animation,
but UNIX systems predated this and so GUIs were added almost as an
afterthought. For many years, Linux and its UNIX brethren were
primarily used without graphics of any sort, but today it is perhaps
more common than not for users to prefer their Linux computers come
with shiny, flashy, clickable GUIs, and all these GUIs run on
X(7).

So what is X? Is it the desktop with the icons? Is it the menus? Is it
the window manager? Does it mark the spot? The answer to all these is a
resounding “no”. There are many parts to a GUI, but X is the most
fundamental. X is that application that receives input from the mouse,
keyboard, and possibly other devices. X is that application that tells
the graphics card what to do. In short, X is the application that talks
to your computer's hardware for graphical purposes; all other
graphical applications simply talk to X.

Let's stop for a moment and talk about nomenclature. X is just one of a
dozen names that you may encounter. It is also called X11, xorg, the X Window
System, X Window, X11R6, X Version 11, and several others. Whatever
you hear it called, simply understand that the speakers are referring
to X.

Configuring the X Server

Once upon a time, configuring X was a difficult and painful process
that caused the magic smoke to come gushing out of hundreds of
monitors. Today X is a lot more user friendly. In fact, most users will
not need to configure X at all, Slackware will simply figure out all
the proper settings on its own. There are, however, still some
computers that X can't properly auto-configure and will need a little
bit of work on your part.

Once upon a time, the X configuration file was located at
/etc/X11/xorg.conf, and if you create a file
there, X will honor whatever settings you place within it.
Fortunately, with X.Org 1.6.3 an
/etc/X11/xorg.conf does not even need to be
present for X to generate a working display.
If for whatever reason, you need to make configuration changes to X,
try to avoid using this file; it's antiquated and inflexible. Rather,
the /etc/X11/xorg.conf.d/ directory is where you
should put such tweaks. Any file you place within that directory will
be read when X starts up. This allows you to split-up your
configuration into more easily manageable parts. For example, here's
my /etc/X11/xorg.conf.d/synaptics.conf file for my
laptop.

darkstar:~$ cat /etc/X11/xorg.conf.d/synaptics.conf
Section "InputDevice"
Identifier "Synaptics Touchpad"
Driver "synaptics"
Option "SendCoreEvents" "true"
Option "Device" "/dev/psaux"
Option "Protocol" "auto-dev"
Option "SHMConfig" "on"
Option "LeftEdge" "100"
Option "RightEdge" "1120"
Option "TopEdge" "50"
Option "BottomEdge" "310"
Option "FingerLow" "25"
Option "FingerHigh" "30"
Option "VertScrollDelta" "20"
Option "HorizScrollDelta" "50"
Option "MinSpeed" "0.79"
Option "MaxSpeed" "0.88"
Option "AccelFactor" "0.0015"
Option "TapButton1" "1"
Option "TapButton2" "2"
Option "TapButton3" "3"
Option "MaxTapMove" "100"
Option "HorizScrollDelta" "0"
Option "HorizEdgeScroll" "0"
Option "VertEdgeScroll" "1"
Option "VertTwoFingerScroll" "0"
EndSection

By placing such options in individual files, you can easily manage your
X configuration by sections.

Choosing a Window Manager

Slackware Linux includes many different window managers and desktop
environments. Window managers are the applications responsible for
painting application windows on the screen, resizing these windows, and
similar tasks. Desktop environments include a window manager, but also
add task bars, menus, icons, and more. Slackware includes both the KDE
and XFCE desktop environments and several additional window managers.
Which you use is entirely your own decision, but in general, window
managers tend to be faster than desktop environments and more suitable
to older systems with less memory and slower processors. Desktop
environments will be more comfortable for users accustomed to Microsoft
Windows.

The easiest way to choose a window manager is
xwmconfig(1), included with Slackware Linux.
This application allows a user to choose what window manager to run
with startx.

[image: ../Images/slackbook_xwmconfig.png]

Setting Up A Graphical Login

By default, when you boot your Slackware Linux system you are presented
with a login prompt on a virtual terminal. This is more than adequate
for most people's needs. If you need to run commandline applications,
you may login and do so right away. If you want to run X, simply executing
startx will do that for you nicely.
But suppose you almost exclusively
use your system for graphical duties like many laptop owners? Wouldn't
it be nice for Slackware to take you straight into a GUI? Fortunately,
there's an easy way to do just that.

Slackware uses the System V init system which allows the administrator
to boot into or change to different runlevels, which are really just
different “states” the computer can be in. In fact, shutting down the
computer is really only a case of changing to a runlevel which
accomplishes just that. Runlevels can be rather complicated, so we
won't delve into them any further than necessary.

Runlevels are configured in inittab(5).
The most common ones are
runlevel 3 (Slackware's default) and runlevel 4 (GUI). In order to tell
Slackware to boot to a GUI screen, simply open
/etc/inittab with your
favorite editor of choice. (You may wish to refer to one of the
chapters on vi or
emacs at this point.) Near the top, you'll
see the relevant entries.

These are the default runlevels in Slackware:
0 = halt
1 = single user mode
2 = unused (but configured the same as runlevel 3)
3 = multiuser mode (default Slackware runlevel)
4 = X11 with KDM/GDM/XDM (session managers)
5 = unused (but configured the same as runlevel 3)
6 = reboot
Default runlevel. (Do not set to 0 or 6)
id:3:initdefault:

In this file (along with most configuration files) anything following a
hash symbol # is a comment and not interpreted by init(8). Don't worry
if you don't understand everything about inittab, as many veteran users
don't either. The only line we are interested in is the last on above.
Simply change the 3 to a 4 and reboot.

These are the default runlevels in Slackware:
0 = halt
1 = single user mode
2 = unused (but configured the same as runlevel 3)
3 = multiuser mode (default Slackware runlevel)
4 = X11 with KDM/GDM/XDM (session managers)
5 = unused (but configured the same as runlevel 3)
6 = reboot
Default runlevel. (Do not set to 0 or 6)
id:4:initdefault:

Chapter Navigation

Previous Chapter: Process Control[bookmark: backto_49][49]

Next Chapter: Printing[bookmark: backto_50][50]

Sources

	 Original source: http://www.slackbook.org/beta[bookmark: backto_51][51]

	 Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook,
xwindows,
gui,
window managers

Printing

Choosing A Printer

Linux hasn't always had a great history with printers. For many years,
printing was a black art to many Linux users, and very few printers
worked reliably. Today, most printers will work well with Linux, but
some still do not. If you're purchasing a new printer, be aware that
many of the cheap inkjet models aren't as well supported in Linux as
more expensive laser printers. If you're unsure about a printer, you
can check online to see if others have had success with it.

All these warnings are perhaps a bit overkill though, as the large
majority of printers work with Linux after only a brief and simple
setup. The progress in this direction is largely due to the efforts of
the Common UNIX Printing System, (CUPS). CUPS is a printing system used
by Slackware and most other Linux distributions today. It primarily uses
a graphical setup procedure accessed via a web browser. In order to
setup a printer with CUPS, you'll need to open a web browser such as
firefox, konqueror, or links and go to
http://localhost:631[bookmark: backto_52][52].

[image: ../Images/slackbook_cups-01.png]

You might find that a quick click-through of CUPS configures your
printer nearly automatically. Or, you may find that further
configuration is required. To learn more about how printing works or
how to get a stubborn printer configured, read on.

Getting the driver

There are, essentially, three types of printer drivers:

	 Postscript printers use the universal-ish language of Postscript to communicate with computers. A driver for postscript printers is usually not needed, since a postscript-compatible subsystem called Ghostscript is already installed.

	 Gutenprint are drivers engineered by GNU Linux developers. It provides support for roughly 700 printers.

	 Manufacturers may provide Linux drivers for their printers. Find out by going to the manufacturer's driver and support website and searching for your model.

Since gutenprint is already installed on Slackware, from this set of three categories, we have two methods of installing drivers:

	 For the manufacturer's drivers, installation is usually the same as any other software on your system; use installpkg or rpm2tgz to install the driver package. Be sure to read the documentation bundled with the drivers.

	 For Postscript printers, there is no “installation” as such; simply download the appropriate PPD file and keep it in a sensible location on your hard drive.

Once you've located and installed or downloaded the necessary components, you're ready to run CUPS.

Setting Up a Printer in CUPS

From this point onward, setting up a printer is just a series of
following the step-by-step instructions with CUPS, but understanding
how the printing configuration actually works might help clarify
what CUPS does is doing.

The file /etc/cups/printers.conf
consists of definitions which detail the printing devices your
computer will be able to access, with one marked as the default
device. If you wish to edit this file manually (and you probably
don't), you must stop the cupsd
CUPS daemon.

A typical entry would look something like this:

<Printer r1060>
Info Ricoh 1060
Location Downstairs
MakeModel Ricoh Aficio 1060 - CUPS+Gutenprint v5.2.6
DeviceURI lpd://192.168.4.8
State Idle
StateTime 1316011347
Type 12308
Filter application/vnd.cups-raw 0 -
Filter application/vnd.cups-raster 100 rastertogutenprint.5.2
standard-ish stuff below here
Accepting Yes
Shared No
JobSheets none none
QuotaPeriod 0
PageLimit 0
KLimit 0
OpPolicy default
ErrorPolicy stop-printer
</Printer>

In this example, we have given the printer the name
r1060, a human-readable identifier
Ricoh 1060.

The MakeModel attribute is gained from
lpinfo, which lists all available
printer drivers on your system. So, if you know that you have a
Ricoh 1060 that you want to print to, then you would issue this
command as root:

darkstar:~# lpinfo -m | grep 1060

This lists the drivers that you have installed, grepping for the
string 1060:

gutenprint.5.2://brother-hl-1060/expert Brother HL-1060 - CUPS+Gutenprint v5.2.6
gutenprint.5.2://ricoh-afc_1060/expert Ricoh Aficio 1060 - CUPS+Gutenprint v5.2.6

The MakeModel is the last half of the
appropriate result; in this case Ricoh Aficio 1060 -
CUPS+Gutenprint v5.2.6

The final vital entry is the device URI, or where on the network
(or physical location, such as the USB port), the printer
can be found. In this example, we use DeviceURI
lpd: // 192.168.4.8 because we are using the
lpd (line printer daemon)
protocol to send data to the printer.

Now you understand what is being configured, and you can use the
more common (and easier) method of doing this from the
configuration tool that runs inside of a web browser.

In the CUPS interface, choose the Administration
tab, and choose to Add Printer. You should
be asked to enter administrative authorization here; enter
root as the admin and your root
password.

You will be presented with a list of printer interfaces and
protocols that you can use for a printer. In many cases, you will
want to add the printer via the
LPD/LPR protocol (unless you've
managed to find a printer that requires some other protocol).

Note that if the printer is plugged directly into your computer, and
is on, you should see it listed as a Local Printer.

Assuming the printer is networked, the next screen will ask for the
location of the printer. Using lpd: // as the protocol,
enter the IP address of the printer. To find the IP address of the
printer, you will probably need to look at the printer's
settings, or you may be able to determine it from your router.

Whether your printer is connected via USB or network, the following
screen will ask for human-readable details about the printer; this
is for your reference only, so enter a name for the printer that
makes sense to you and your users (the model number
usually), a description (something that is distinctive about
the printer if you have more than one of the same printers), and
the location (describing where it is in the building).

On the next screen, point CUPS to the printer driver. If the
printer is a postscript printer (as most laserprinters are)
then you may need only the PPD for that
printer. If your printer is not postscript or has special features
that require additional drivers, then define the make
(manufacturer) and you will then be presented with a list of
available drivers. Select the appropriate driver.

The printer is now installed and will be the default printer for all
of your applications.

Printing from the Command Line

Now that you have successfully installed and configured your
printer, you may also use lpr to print
from the command line.

lpr sends documents to a printer but
before using it, you might want to define a default printer by
using lpadmin as root:

lpadmin -d r1060

In this example, r1060 is the human
readable name given to the printer in either
/etc/cups/printers.conf or in
the CUPS configuration.

If you do not have root privileges on the workstation you are
using, you can also set the PRINTER
environment variable:

User and Group Management

What Are Users and Groups?

Slackware Linux inherits a strong multi-user tradition from its UNIX
inspiration. This means that multiple people may use the system at
once, but it also means that each of these people may have different
permissions. This allows users to prevent others from modifying their
files, or lets system administrators explicitly define what users can
and cannot do on the system. Moreover, users need not be actual people
at all. In fact, Slackware includes several dozen pre-defined user
and group accounts that are not typically used by regular users. Rather
these accounts allow the system administrator to segment the system for
security reasons. We'll see how that's done in the next chapter on
filesystem permissions.

Managing Users and Groups

Adding users and groups

The easiest way to add new users in Slackware is through the use of our
very fine adduser shell script.
adduser will prompt you to enter the details
of the new user you wish to create and step you through the process
quickly and easily. It will even create a password for the new user.

darkstar:~# adduser
Login name for new user []: david
User ID ('UID') [defaults to next available]:
Initial group [users]:
Additional UNIX groups:
Users can belong to additional UNIX groups on the system.
For local users using graphical desktop login managers such
as XDM/KDM, users may need to be members of additional groups
to access the full functionality of removable media devices.
* Security implications *
Please be aware that by adding users to additional groups may
potentially give access to the removable media of other users.
If you are creating a new user for remote shell access only,
users do not need to belong to any additional groups as standard,
so you may press ENTER at the next prompt.
Press ENTER to continue without adding any additional groups
Or press the UP arrow to add/select/edit additional groups
: audio cdrom floppy plugdev video
Home directory [/home/david]
Shell [/bin/bash]
Expiry date (YYYY-MM-DD) []:
New account will be created as follows:

Login name.......: david
UID..............: [Next available]
Initial group....: users
Additional groups: audio,cdrom,floppy,plugdev,video
Home directory...: /home/david
Shell............: /bin/bash
Expiry date......: [Never]
This is it... if you want to bail out, hit Control-C. Otherwise, press
ENTER to go ahead and make the account.
Creating new account...
Changing the user information for david
Enter the new value, or press ENTER for the default
Full Name []:
Room Number []:
Work Phone []:
Home Phone []:
Other []:
Changing password for david
Enter the new password (minimum of 5, maximum of 127 characters)
Please use a combination of upper and lower case letters and numbers.
New password:
Re-enter new password:
Password changed.
Account setup complete.

The addition of optional groups needs a little explaining. Every user
in Slackware has a single group that it is always a member of. By
default, this is the “users” group. However, users can belong to more
than one group at a time and will inherit all the permissions of every
group they belong to. Typical desktop users will need to add several
group memberships in order to do things like play sound or access
removeable media like cdroms or USB flash drives. You can simply press
the up arrow key at this section and a list of default groups for
desktop users will magically appear. You can of course, add to or
remove groups from this listing.

Now that we've demonstrated how to use the interactive
adduser program, lets look at some powerful
non-interactive tools that you may wish to use. The first is
useradd(8).
useradd is a little less friendly, but much
faster for creating users in batches. This makes it ideal for use in
shell scripts. In fact, adduser is just such
a shell script and uses useradd for most of
the heavy lifting. useradd has many options
and we can't explain them all here, so refer to its man page for the
complete details. Now, let's make a new user.

darkstar:~# useradd -d /data/home/alan -s /bin/bash -g users -G audio,cdrom,floppy,plugdev,video alan

Here I have added the user “alan”. I specified the user's home
directory as /data/home/alan and used
bash as my shell. Also, I specified my
default group as “users” and added myself to a number of useful groups
for dekstop use. You'll note that useradd
does not do any prompting like adduser.
Unless you want to accept the defaults for everything, you'll need to
tell useradd what to do.

Now that we know how to add users, we should learn how to add groups.
As you might have guessed, the command for doing this is
groupadd(8).
groupadd works in the same way as
useradd, but with far fewer options. The
following command adds the group “slackers” to the system.

darkstar:~# groupadd slackers

Deleting users and groups is easy as well. Simply run the
userdel(8) and
groupdel(8) commands. By default,
userdel will leave the user's home directory
on the system. You can remove this with the -r argument.

Other User and Group Tools

Several other tools exist for managing users and groups. Perhaps the
most important one is passwd(1). This
command changes a user account's password. Normal users may change
their own passwords only, but root can change anyone's password. Also,
root can lock a user account with the -l argument. This
doesn't actually shutout the account, but instead changes the user's
encrypted password to a value that can't be matched.

The easiest way for modifying a user's information is the
usermod(8) utility which is capable of
modifying everything from group membership to home directories. A full
listing of its features won't be given here, so check the man page.
usermod is perhaps the best tool to use for
modifying a user's group members. The -s and -G
arguments accomplish this.

darkstar:~# usermod -a -G wheel alan
darkstar:~# usermod -G wheel alan

It important to note the differences in the two commands above. The
first command adds the user “alan” to the “wheel” group without
modifying any other groups “alan” belongs to. The second command also
makes “alan” a member of the “wheel” group, but also removes the user's
membership from any other groups, something you will very rarely want
to do!

Another useful tool is chsh(1) which changes a
user's default shell. Like passwd, normal
users can only change their own shell, but the root user can change
anyone's.

The last tool we're going to discuss is
chfn(1). This is used to enter identifying
information on the user such as his phone number and real name. This
information is stored in the passwd(5) file and
retrieved using finger(1).

Managing Users and Groups Manually

Like most things in Slackware Linux, users and groups are stored in
plain-text files. This means that you can edit all the details of a
user, or even create a new user or group simply by editing these files
and doing a few other tasks like creating the user's home directory. Of
course, after you see how this is done you'll appreciate just how
simple the included tools make this task.

Our first stop is the /etc/passwd file. Here, all
the information about a user is stored, except for (oddly enough) the
user's password. The reason for this is rather simple.
/etc/passwd must be readable by all users on the
system, so you wouldn't want passwords stored there, even if they are
encrypted. Let's take a quick look at my entry in this file.

alan:x:1000:100:,,,:/home/alan:/bin/bash

Each line in this file contains a number of fields seperated by a
colon. They are, from left to right: username, password, UID, GUID, a
comment field, home directory, and shell. You'll notice that the
password field for every entry is an x. That is
because Slackware uses shadow passwords, so the actual encrypted
password is stored in /etc/shadow. Let's take a
look there.

alan:1HlR?M3fkL@oeJmsdLfhsLFM*4dflPh8:14197:0:99999:7:::

The shadow file contains more than just the
encrypted password as you'll notice. The fields here, again from left
to right, are: username, encrypted password, last day the password was
changed, days before the password may be changed again, how many days
before the password expires, days that the account will be disabled
after expiring, when the account was disabled, and a reserved field.
You may notice on some accounts that the various “days” fields often
include very large numbers. The reason for this is that Slackware
counts time from the “Epoch” which is January 1, 1970 for historical
reasons.

To create a new user account, you'll just need to open these files
using vipw(8). This will open
/etc/passwd in the editor
defined by your VISUAL variable or your EDITOR variable if VISUAL isn't
defined. If neither is present, it will fall back to
vi by default. If you pass the -s
argument, it will open /etc/shadow instead. It's
important to use vipw instead of using any
other editor, because vipw will lock the
file and prevent other programs from editing it right underneath your feet.

That isn't all you'll need to do however; you must also create the
user's home directory and change the user's password using
passwd.

Chapter Navigation

Previous Chapter: Printing[bookmark: backto_56][56]

Next Chapter: Filesystem Permissions[bookmark: backto_57][57]

Sources

	 Original source: http://www.slackbook.org/beta[bookmark: backto_58][58]

	 Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook,
users,
groups,
passwd

Filesystem Permissions

Permissions Overview

As we've discussed, Slackware Linux is a multi-user operating system.
Because of this, its filesystems are mutli-user as well. This means
that every file or directory has a set of permissions that can grant or
deny privileges to different users. There are three basic permissions
and three sets of permissions for each file. Let's take a look at an
example file.

darkstar:~$ ls -l /bin/ls
-rwxr-xr-x 1 root root 81820 2007-06-08 21:12 /bin/ls

Recall from chapter 4 that ls -l
lists the permissions for a file or
directory along with the user and group that “own” the file. In this
case, the permissions are rwxr-xr-x, the user is root and the group is
also root. The permissions section, while grouped together, is really
three separate pieces. The first set of three letters are the
permissions granted to the user that owns the file. The second set of
three are those granted to the group owner, and the final three are
permissions for everyone else.

Table 10.1. Permissions of /bin/ls

	Set		Listing		Meaning

	Owner		rwx		The owner “root” may read, write, and execute

	Group		r-x		The group “root” may read and execute

	Others		r-x		Everyone else may read and execute

The permissions are pretty self explanatory of course, at least for
files. Read, write, and execute allow you to read a file, write to it,
or execute it. But what do these permissions mean for directories?
Simply put, the read permissions grants the ability to list the
directory's contents (say with ls). The write
permission grants the ability to create new files in the directory as
well as delete the entire directory, even if you otherwise wouldn't be
able to delete some of the other files inside it. The execute
permission grants the ability to actually enter the directory (with the
bash built-in command cd for example).

Let's look at the permissions on a directory now.

darkstar:~$ ls -ld /home/alan
drwxr-x--- 60 alan users 3040 2008-06-06 17:14 /home/alan/

Here we see the permissions on my home directory and its ownership. The
directory is owned by the user alan and the group users. The user is
granted all rights (rwx), the group is granted only read and execute
permissions (r-x), and everyone else is prohibited from doing anything.

chmod, chown, and chgrp

So now that we know what permissions are, how do we change them? And
for that matter, how do we assign user and group ownership? The answer
is right here in this section.

The first tool we'll discuss is the useful
chown
(1) command. Using chown, we can (you guessed
it), change the ownership of a file or
directory. chown is historically used only
to change the user ownership, but can change the group ownership as well.

darkstar:~# ls -l /tmp/foo
total 0
-rw-r--r-- 1 alan users 0 2008-06-06 22:29 a
-rw-r--r-- 1 alan users 0 2008-06-06 22:29 b
darkstar:~# chown root /tmp/foo/a
darkstar:~# ls -l /tmp/foo
total 0
-rw-r--r-- 1 root users 0 2008-06-06 22:29 a
-rw-r--r-- 1 alan users 0 2008-06-06 22:29 b

By using a colon after the user account, you may also specify a new
group account.

darkstar:~# chown root:root /tmp/foo/b
darkstar:~# ls -l /tmp/foo
total 0
-rw-r--r-- 1 root users 0 2008-06-06 22:29 a
-rw-r--r-- 1 root root 0 2008-06-06 22:29 b

chown can also be used recursively to change
the ownership of all files and directories below a target directory.
The following command would change all the files under the directory
/tmp/foo to have their ownership set to root:root.

darkstar:~# chown -R root:root /tmp/foo/b

Specifying a colon and a group name without a user name will simply
change the group for a file and leave the user ownership intact.

darkstar:~# chown :wheel /tmp/foo/a
darkstar:~# ls -l /tmp/foo
ls -l /tmp/foo
total 0
-rw-r--r-- 1 root wheel 0 2008-06-06 22:29 a
-rw-r--r-- 1 root root 0 2008-06-06 22:29 b

The younger brother of chown is the
slightly less useful chgrp(1). This
command works just like chown, except
it can only change the group
ownership of a file. Since chown can
already do this, why bother with
chgrp? The answer is simple. Many other
operating systems use a
different version of chown that cannot
change the group ownership, so
if you ever come across one of those, now you know how.

There's a reason we discussed changing ownership before changing
permissions. The first is a much easier concept to grasp. The tool for
changing permissions on a file or directory is
chmod(1). The syntax for it
is nearly identical to that for chown, but
rather than
specify a user or group, the administrator must specify either a set of
octal permissions or a set of alphabetic permissions. Neither one is
especially easy to grasp the first time. We'll begin with the less
complicated octal permissions.

Octal permissions derive their name from being assigned by one of eight
digits, namely the numbers 0 through 7. Each permissions is assigned a
number that is a power of 2, and those numbers are added together to
get the final permissions for one of the permission sets. If this
sounds confusing, maybe this table will help.

Table 10.2. Octal Permissions

	Permission		Meaning

	Read		4

	Write		2

	Execute		1

By adding these values together, we can reach any number between 0 and
7 and specify all possible permission combinations. For example, to
grant both read and write privileges while denying execute, we would
use the number 6. The number 3 would grant write and execute
permissions, but deny the ability to read the file. We must specify a
number for each of the three sets when using octal permissions. It's
not possible to specify only a set of user or group permissions this
way for example.

darkstar:~# ls -l /tmp/foo/a
-rw-r--r-- 1 root root 0 2008-06-06 22:29 a
darkstar:~# chmod 750 /tmp/foo/a
darkstar:~# ls -l /tmp/foo/a
-rwxr-x--- 1 root root 0 2008-06-06 22:29 a

chmod can also use letter values along with
+ or − to grant or deny permissions.
While this may be easier to
remember, it's often easier to use the octal permissions.

Table 10.3. Alphabetic Permissions

	Permission		Letter Value

	Read		r

	Write		w

	Execute		x

Table 10.4. Alphabetic Users and Groups

	Accounts Affected		Letter Value

	User/Owner		u

	Group		g

	Others/World		o

To use the letter values with chmod, you
must specify which set to use them with, either “u” for user, “g” for
group, and “o” for all others. You must also specify whether you are
adding or removing permissions with the “+” and “-” signs. Multiple
sets can be changed at once by separating each with a comma.

darkstar:/tmp/foo# ls -l
total 0
-rw-r--r-- 1 alan users 0 2008-06-06 23:37 a
-rw-r--r-- 1 alan users 0 2008-06-06 23:37 b
-rw-r--r-- 1 alan users 0 2008-06-06 23:37 c
-rw-r--r-- 1 alan users 0 2008-06-06 23:37 d
darkstar:/tmp/foo# chmod u+x a
darkstar:/tmp/foo# chmod g+w b
darkstar:/tmp/foo# chmod u+x,g+x,o-r c
darkstar:/tmp/foo# chmod u+rx-w,g+r,o-r d
darkstar:/tmp/foo# ls -l
-rwxr--r-- 1 alan users 0 2008-06-06 23:37 a*
-rw-rw-r-- 1 alan users 0 2008-06-06 23:37 b
-rwxr-x--- 1 alan users 0 2008-06-06 23:37 c*
-r-xr----- 1 alan users 0 2008-06-06 23:37 d*

Which you prefer to use is entirely up to you. There are places where
one is better than the other, so a real Slacker will know both inside
out.

SUID, SGID, and the "Sticky" Bit

We're not quite done with permissions just yet. There are three other
“special” permissions in addition to those mentioned above. They are
SUID, SGID, and the sticky bit. When a file has one or more of these
permissions set, it behaves in special ways. The SUID and SGID
permissions change the way an application is run, while the sticky bit
restricts deletion of files. These permissions are applied with
chmod
like read, write, and execute, but with a twist.

SUID and SGID stand for “Set User ID” and “Set Group ID” respectively.
When an application with one of these bits is set, the application runs
with the user or group ownership permissions of that application
regardless of what user actually
executed it. Let's take a look at a common SUID application, the humble
passwd and the files it modifies.

darkstar:~# ls -l /usr/bin/passwd \
/etc/passwd \
/etc/shadow
-rw-r--r-- 1 root root 1106 2008-06-03 22:23 /etc/passwd
-rw-r----- 1 root shadow 627 2008-06-03 22:22 /etc/shadow
-rws--x--x 1 root root 34844 2008-03-24 16:11 /usr/bin/passwd*

Notice the permissions on passwd. Instead of
an x in the user's execute slot, we have an
s. This tells us that
passwd is a SUID program, and when we run
it, the process will run as the user “root” rather than as the user
that actually executed it. The reason for this is readily apparent as
soon as you look at the two files it modifies. Neither
/etc/passwd nor /etc/shadow
are writable by anyone other than root. Since users need to change
their personal information, passwd must be
run as root in order to modify those files.

So what about the sticky bit? The sticky bit restricts the ability to
move or delete files and is only ever set on directories. Non-root
users cannot move or delete any files under a directory with the sticky
bit set unless they are the owner of that file. Normally anyone with
write permission to the file can do this, but the sticky bit prevents
it for anyone but the owner (and of course, root). Let's take a look at
a common “sticky” directory.

darkstar:~# ls -ld /tmp
drwxrwxrwt 1 root root 34844 2008-03-24 16:11 /tmp

Naturally, being a directory for the storage of temporary files system
wide, /tmp needs to be readable, writable, and
executable by anyone and everyone. Since any user is likely to have a
file or two stored here at any time, it only makes good sense to
prevent other users from deleting those files, so the sticky bit has
been set. You can see it by the presence of the t in
place of the x in the world permissions section.

Table 10.5. SUID, SGID, and “Sticky” Permissions

	Permission Type		Octal Value		Letter Value

	SUID		4		s

	SGID		2		s

	Sticky		1		t

When using octal permissions, you must specify an additional leading
octal value. For example, to recreate the permission on
/tmp, we would use 1777. To recreate those
permissions on /usr/bin/passwd, we would use 4711.
Essentially, any time this leading fourth octet isn't specified,
chmod assumes its value to be 0.

darkstar:~# chmod 1777 /tmp
darkstar:~# chmod 4711 /usr/bin/passwd

Using the alphabetic permission values is slightly different. Assuming
the two files above have permissions of 0000 (no permissions at all),
here is how we would set them.

darkstar:~# chmod ug+rwx,o+rwt /tmp
darkstar:~# chmod u+rws,go+x /usr/bin/passwd

Chapter Navigation

Previous Chapter: Users and Groups[bookmark: backto_59][59]

Next Chapter: Working with Filesystems[bookmark: backto_60][60]

Sources

	 Original source: http://www.slackbook.org/beta[bookmark: backto_61][61]

	 Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook,
filesystem,
permissions,
suid,
sgid,
sticky bit,
chmod,
chown,
chgrp

Working with Filesystems

The Filesystem Hierarchy

Slackware Linux stores all of its files and directories under a single
/ directory, typically referred to as “root”. This
is in stark contract to what you may be familiar with in the form of
Microsoft Windows. Different hard disk partitions, cdroms, usb flash
drives, and even floppy disks can all be mounted in directories under
/, but do not have anything like “drive letters”.
The contents of these devices can be found almost anywhere, but there
are some sane defaults that Slackware sets up for you. For example,
cd-rw drives are most often found at /mnt/cd-rw.
Here are a few common directories present on nearly all Slackware Linux
installations, and what you can expect to find there.

Table 11.1. Filesystem Layout

	/		The root directory, under which all others exist

	/bin		Minimal set of binary programs for all users

	/boot		The kernel, initrd, and other requirements for booting Slackware

	/etc		System configuration files

	/dev		Collection of special files allowing direct access to hardware

	/home		User directories where personal files and settings are stored

	/media		Directory for auto-mounting features in DBUS/HAL

	/mnt		Places to temporarily mount removable media

	/opt		Directory where some (typicaly proprietary) software may be installed

	/proc		Kernel exported filesystem for process information

	/root		The root user's home directory

	/sbin		Minimal set of system or superuser binaries

	/srv		Site-specific data such as web pages served by this system

	/sys		Special kernel implimentation details

	/tmp		Directory reserved for temporary files for all users

	/usr		All non-essential programs, libraries, and shared files

	/var		Regularly changing data such as log files

Local Filesystem Types

The Linux kernel supports a wide variety of filesystems, which allows
you to choose from a long list of features to tailor to your particular
need. Fortunately, most of the default filesystem types are adequate
for any needs you may have. Some filesystems are geared towards
particular media. For example, the iso9660 filesystem is used almost
exclusively for CD and DVD media.

ext2

ext2 is the oldest filesystem included in Slackware Linux for storing
data on hard disks. Compared to other filesystems, ext2 is simplistic.
It is faster than most others for reading and writing data, but does
not include any journaling capability. This means that after a hard
crash, the filesystem must be exhaustively checked to discover and
(hopefully) fix any errors.

ext3

ext3 is the younger cousin of ext2. It was designed to replace ext2 in
most situations and shares much the same code-base, but adds journaling
support. In fact, ext3 and ext2 are so much alike that it is possible
to convert one to the other on the fly without lose of data. ext3
enjoys a lot of popularity for these reasons. There are many tools
available for recovering data from this filesystem in the event of
catastrophic hardware failure as well. ext3 is a good general purpose
filesystem with journaling support, but fails to perform as well as
other journaling filesystems in specific cases. One pitfall to ext3 is
that the filesystem must still go through this exhaustive check every
so often. This is done when the filesystem is mounted, usually when the
computer is booted, and causes an annoying delay.

ext4

ext4 is the latest in the ext series of filesystems. It was designed to
build upon ext3 with new ideas on what filesystems should do. While
Slackware supports ext4, you should remember that this filesystem is
still very new (particularly in file system terms) and is under heavy
development. If you require stability over performance, you may wish to
use a different filesystem such as ext3. With that said, ext4 does
boast some major improvements over ext3 in the performance arena, but
many people don't yet trust it for stable use.

reiserfs

reiserfs is one of the oldest journaling filesystems for the Linux
kernel and has been supported by Slackware for many years. It is a very
fast filesystem particularly well suited for storing, retrieving, and
writing lots of small files. Unfortunately there are few tools for
recovering data should you experience a drive failure, and reiserfs
partitions experience corruption more often than ext3.

XFS

XFS was contributed to the Linux kernel by SGI and is one of the best
filesystems for working with large volumes and large files. XFS uses
more RAM than other filesystems, but if you need to work with large
files its performance there is well worth the penalty in memory usage.
XFS is not particularly ill-suited for desktop or laptop use, but
really shines on a server that handles medium to large size files all
day long. Like ext3, XFS is a fully journaled filesystem.

JFS

JFS was contributed to the Linux kernel by IBM and is well known for
its responsiveness even under extreme conditions. It can span colossal
volumes making it particularly well-suited for Network Attached Storage
(NAS) devices. JFS's long history and thorough testing make it one of
the most reliable journaling filesystems available for Linux.

iso9660

iso9660 is a filesystem specifically designed for optical media such as
CDs and DVDs. Since optical disks are read-only media, the linux kernel
does not even include write support for this filesystem. In order to
create an iso9660 filesystem, you must use user-land tools like
mkisofs(8) or
growisofs(8).

vfat

Sometimes you may need to share data between Windows and Linux
computers, but can't transfer the files over a network. Instead you
require a shared hard drive partition or a USB flash drive. The humble
vfat filesystem is the best choice here since it is supported by the
largest variety of operating systems. Unfortuantely, being a Microsoft
designed filesystem, it does not store permissions in the same way as
traditional Linux filesystems. This means that special options must be
used to allow multiple users to access data on this filesystem.

swap

Unlike other filesystems which hold files and directories, swap
partitions hold virtual memory. This is very useful as it prevents the
system from crashing should all your RAM be consumed. Instead, the
kernel copies portions of the RAM into swap and frees them up for other
applications to use. Think of it as adding virtual memory to your
computer, very slow virtual memory. swap is typically a fail-safe and
shouldn't be relied upon for continual use. Add more RAM to your system
if you find yourself using lots of swap.

Using mount

Now that we've learned what (some of) the different filesystems
available in Linux are, it's time we looked at how to use them.
In order to read or write data on a filesystem, that filesystem
must first be mounted. To do this, we (naturally) use mount(8).
The first thing we must do is decide where we want the filesystem
located. Recall that there are no such things are drive letters
denoting filesystems in Linux. Instead, all filesystems are mounted
on directories. The base filesystem on which you install Slackware
is always located at / and others are always located in
subdirectories of /. /mnt/hd is a common place to temporarily
locate a partition, so we'll use that in our first example.
In order to mount a filesystem's contents, we must tell mount what
kind of filesystem we have, where to mount it, and any special
options to use.

darkstar:~# mount -t ext3 /dev/hda3 /mnt/hd -o ro

Let's disect this. We have an ext3 filesystem located on the third
partition of the first IDE device, and we've decided to mount its
contents on the directory /mnt/hd. Additionally, we have mounted it
read-only so no changes can be made to these contents. The [-t ext3]
argument tells mount what type of filesystem we are using, in this
case it is ext3. This lets the kernel know which driver to use.
Often mount can determine this for itself, but it never hurts to
explicitly declare it. Second, we tell mount where to locate the
filesystem's contents. Here we've chosen /mnt/hd. Finally,
we must decide what options to use if any. These are declared with
the [-o] argument. A short-list of the most common options follows.

Table 11.2. Common mount options

	ro		read-only

	rw		read-write (default)

	uid		user to own the contents of the filesystem

	gid		group to own the contents of the filesystem

	noexec		prevent execution of any files on the filesystem

	defaults		sane defaults for most filesystems

If this is your first Linux installation, the only options you
typically need to be concerned about are ro and
rw. The exception to this rule comes when you are dealing
with filesystems that don't handle traditional Linux permissions such
as vfat or NTFS. In those cases you'll need to use the uid
or gid options to allow non-root users access to these
filesystems.

darkstar:~# mount -t vfat /dev/hda4 /mnt/hd -o uid=alan

But Alan, that's appalling! I don't want to have to tell mount what
filesystem or options to use everytime I load a CD. It should be easier
than that. Well thankfully, it is. The /etc/fstab
file contains all this information for filesystems that the installer
sets up for you, and you can make additions to it as well.
fstab(5) looks like a simple table containing the
device to mount along with its filesystem type and optional arguments.
Let's take a look.

darkstar:~# cat /etc/fstab
/dev/hda1 / reiserfs defaults 1 1
/dev/hda2 /home reiserfs defaults 1 2
/dev/hda3 swap swap defaults 0 0
/dev/cdrom /mnt/cdrom auto noauto,owner,ro,users 0 0
/dev/fd0 /mnt/floppy auto noauto,owner 0 0
devpts /dev/pts devpts gid=5,mode=620 0 0
proc /proc proc defaults 0 0

If you have an entry in fstab for your filesystem, you
need only tell mount the device node or the mount location.

darkstar:~# mount /dev/cdrom
darkstar:~# mount /home

One final use for
mount
is to tell you what filesystems are currently mounted and with what
options. Simply run
mount
without any arguments to display these.

Network Filesystems

In addition to local filesystems, Slackware supports a number of network
filesystems as both client and server. This allows you to share data
between multiple computers transparently. We'll discuss the two most
common: NFS and SMB.

NFS

NFS is the Network File System for Linux as well as several other common
operating systems. It has modest performance but supports the full range of
permissions for Slackware. In order to use NFS as either a client or a
server, you must run the remote procedure call daemon. This is easily
accomplished by setting the /etc/rc.d/rc.rpc file
executable and telling it to start. Once it has been set executable, it
will run automatically every time you boot into Slackware.

darkstar:~# chmod +x /etc/rc.d/rc.rpc
darkstar:~# /etc/rc.d/rc.rpc start

Mounting an NFS share is little different than mounting a local filesystem.
Rather than specifying a local device, you must tell mount the domain name
or IP address of the NFS server and the directory to mount with a colon
between them.

darkstar:~# mount -t nfs darkstar.example.com:/home /home

Running an NFS server is a little bit different. First, you must configure
each directory to be exported in the /etc/exports
file. exports(5) contains information about what
directories will be shared, who they will be shared with, and what special
permissions to grant or deny.

See exports(5) for a description.
This file contains a list of all directories exported to other computers.
It is used by rpc.nfsd and rpc.mountd.
/home/backup	192.168.1.0/24(sync,rw,no_root_squash)

The first column in
exports
is a list of the files to be exported via NFS. The second column is a list
of what systems may access the export along with special permissions. You
can specify hosts via domain name, IP address, or netblock address (as I
have here). Special permissions are always a parenthetical list. For a
complete list, you'll need to read the man page. For now, the only special
option that matters is no_root_squash. Usually the root user on
an NFS client cannot read or write an exported share. Instead, the root
user is “squashed” and forced to act as the nobody user.
no_root_squash prevents this.

You'll also need to run the NFS daemon. Starting and stopping NFS server
support is done with the /etc/rc.d/rc.nfsd rc script.
Set it executable and run it just like we did for
rc.rpc and you are ready to go.

SMB

SMB is the Windows network file-sharing protocol. Connecting to SMB shares
(commonly called samba shares) is fairly straight forward. Unfortuantely,
SMB isn't as strongly supported as NFS. Still, it offers higher performance
and connectivity with Windows computers. For these reasons, SMB is the most
common network file-sharing protocol deployed on local networks. Exporting
SMB shares from Slackware is done through the samba daemon and configured
in smb.conf(5). Unfortunately configuring samba as a
service is beyond the scope of this book. Check online for additional
documentation, and as always refer to the man page.

Thankfully mounting an SMB share is easy and works almost exactly like
mounting an NFS share. You must tell mount where to find the server and
what share you wish to access in exactly the same way. Additionally, you
must specify a username and password.

darkstar:~# mount -t cifs //darkstar/home /home -o username=alan,password=secret

You may be wondering why the filesystem type is cifs instead of smbfs. In
older versions of the Linux kernel, smbfs was used. This has been
deprecated in favor of the better performing and more secure general
purpose cifs driver.

All SMB shares require the username and password
arguments. This can create a security problem if you wish to place your
samba share in fstab. You may avoid this problem by using the
credentials argument. credentials points to a file
which contains the username and password information. As long as this file
is safely guarded and readable only by root, the likelyhood that your
authentication credentials will be compromised is lessened.

darkstar:~# echo "username=alan" > /etc/creds-home
darkstar:~# echo "password=secret" >> /etc/creds-home
darkstar:~# mount -t cifs //darkstar/home -o credentials=/etc/creds-home

Chapter Navigation

Previous Chapter: Filesystem Permissions[bookmark: backto_62][62]

Next Chapter: vi[bookmark: backto_63][63]

Sources

	 Original source: http://www.slackbook.org/beta[bookmark: backto_64][64]

	 Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook,
filesystem,
network filesystems,
nfs,
smb,
mount

Vi

What is vi?

Scattered all around your computer are thousands of text files. To a
new user, this may seem inconsequential, but almost everything in
Slackware Linux uses a plain-text file for configuration. This allows
users to make changes to the system quickly, easily, and intuitively.
In chapter 5, we looked at a few commands such as
cat and less that
can be used to read these files, but what if we want to make changes to
them? For that, we need a text editor, and
vi is up to the task.

In short, vi is one of the oldest and most
powerful text editors still used today. It's beloved by system
administrators, programmers, hobbiests, and others the world over. In
fact, nearly this entire book was written using
vi; only the next chapter on
emacs was written with that editor.

A little further explanation is needed to learn exactly what
vi is today though, as Slackware Linux
technically doesn't include vi. Rather,
Slackware includes two vi “clones”, elvis(1)
and vim(1). These clones add many additional
features to vi such as syntax highlighting, binary editing modes, and
network support. We won't go too deeply into all these details. By
default, if you execute vi on Slackware
Linux, you'll be using elvis, so all
examples in this chapter will assume that is what you are using. If
you've used another Linux distribution before, you may be more familiar
with vim. If so, you might wish to change
the symlink for /usr/bin/vi to point to
/usr/bin/vim, or add an alias to your shell's
startup scripts. vim is generally considered
to be more feature-rich than elvis, but
elvis is a much smaller program and contains
more features than most users will ever need.

vi is very powerful, but also somewhat
cumbersome and challening for a new user to learn. However, mastering
vi is an important skill for any
self-respecting system administrator to learn, as
vi is included on nearly every Linux
distribution, every BSD system, and every UNIX system in existance.
It's even included in Mac OS X.
Once you've learned vi, you'll not have to
learn another text editor to work on any of these systems. In fact,
vi clones have even been ported to Microsoft Windows
systems, so you can use it there too.

The Different Modes of vi

New users are often frustrated when using vi
for the first time. When invoked without any arguments,
vi will display a screen something like
this.

~
~
~
~
~
~
~
~
~
~
~
Command

At this point, the user will being typing and expect the keys he
presses to appear in the document. Instead, something really strange
happens. The reason for this is simple. vi
has different operation “modes”. There is a command mode and an insert
mode. Command mode is the default; in this mode, each keystroke
performs a particular action such as moving the cursor around, deleting
text, yanking (copying) text, searching, etc.

Opening, Saving, and Quitting

Ok, so you've decided that you want to learn how to use
vi. The first thing to do is learn how to
open and save files. Opening files is actually pretty easy. Simply type
the filename as an argument on the command-line and
vi will happily load it for you. For
example, vi chapter_11.xml will open the file
chapter_11.xml and load its content onto the
screen, simple enough. But what if we've finished with one document and
wish to save it? We can do that in command mode using the :w
command. When in command mode, pressing the : key
temporarily positions the cursor on the very bottom line of the window
and allows you to enter special commands. (This is technically known as
ex-mode after the venerable ex application
which we will not document here.) The command to save your current work
is :w. Once this is done, vi will
write your changes to the buffer back into the file. If you wish to
open another document, simply use the :e other_document
command and vi will happily open it for you.
If you've made changes to the buffer but haven't saved it yet,
:e will fail and print a warning message on the bottom line.
You can bypass this with the :e! command. Most ex-mode
commands in vi can be “forced” by adding
! to them. This tells vi
that you want to abandon any changes you've made to the buffer and open
the other document immediately.

But what if I don't like my changes and want to quit or start over?
That's easily done as well. Executing the :e! command
without any arguments will re-open the current document from the
beginning. Quitting vi is as simple as
running the :q command if you haven't made any changes to
the buffer, or :q! if you'd like to quit and abandon those
changes.

Moving Around

Moving around in vi is perhaps the hardest
thing for a new user to learn. vi does not
traditionally use the directional arrow keys for cursor movement,
although in Slackware Linux that is an option. Rather, movement is
simply another command issued in command-mode. The reason for this is
rather simple. vi actually predates the
inclusion of directional arrow keys on keyboards. Thus,
movement of the cursor had to be accomplished by using the few
keys available, so the right-hand “home row” keys of
h, j, k, and
l were chosen. These keys will move the cursor about
whenever vi is in command mode. Here's a
short table to help you remember how they work.

	Command 	 Result

	h	Move the cursor one character left

	j	Move the cursor one line down

	k	Move the cursor one line up

	l	Move the cursor one character right

Moving around is a little more powerful than that though. Like many
command keys, these movement keys accept numerical arguments. For
example, 10j will move the cursor down 10 lines. You
can also move to the end or beginning of the current line with
$ and ^, respectively.

Editing A Document

Now that we're able to open and save documents, as well as move around
in them, it's time to learn how to edit them. The primary means of
editing is to enter insert mode using either the i or
a command keys. These either insert text at the
cursor's current location, or append it after the cursor's current
location. Once into insert mode, you can type any text normally and it
will be placed into your document. You can return to command mode in
order to save your changes by pressing the ESC key.

Vi Cheat Sheet

Since vi can be difficult to learn, I've
prepared a short cheat sheat that should help you with the basics until
you begin to feel comfortable.

	 Command 	 Result

	h	Move the cursor one character left

	j	Move the cursor one line down

	k	Move the cursor one line up

	l	Move the cursor one character right

	10j	Move the cursor ten lines down

	G	Move to the end of the file

	^	Move to the beginning of the line

	$	Move to the end of the line

	dd	Remove a line (and store it in the copy buffer)

	5dd	Remove 5 lines (and store them in the copy buffer)

	dw	Remove a single word (and store it in the copy buffer)

	5dw	Remove five words (and store them in the copy buffer)

	yy	Yank (copy) a line (and store it in the copy buffer)

	yw	Yank (copy) a single word (and store it in the copy buffer)

	5yw	Yank five words (and store them in the copy buffer)

	p	Paste the contents of the copy buffer at the cursor's location

	P	Paste the contents of the copy buffer above the cursor's location

	r	Replace a single character

	R	Replace multiple characters

	x	Delete a character

	X	Delete the previous character

	u	Undo the last action

	:s'old'new'g	Replace all occurrences of 'old' with 'new' (current line only)

	:%s'old'new'g	Replace all occurrences of 'old' with 'new' (all lines)

	/asdf	Locate next occurrence of asdf

	:q	Quit (without saving)

	:w	Save the current document

	:w file	Save the current document as 'file'

	:x	Save and quit

Chapter Navigation

Previous Chapter: Working with Filesystems[bookmark: backto_65][65]

Next Chapter: Emacs[bookmark: backto_66][66]

Sources

	 Original source: http://www.slackbook.org/beta[bookmark: backto_67][67]

	 Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook,
vi,
text editor

Emacs

What is Emacs?

vi and its clones are very functional
and powerful editors. However, they are often considered not
particularly extensible. vim is a
successful and powerful
vi variant that shrugs this trend,
being both extremely extensible and lightweight. However, many
users prefer a more “heavy” and extensible editor. This is why
many people (including the author of this chapter) prefer
Emacs.

Emacs takes extensibility up to eleven. Outside of a core of C,
the rest of Emacs is written in a
Lisp variant, nearly all of which is exposed to you, so that you
may configure it or even extend it at will (many good Emacs Lisp
tutorials can be found on the Internet). People have written
all sorts of extensions in Emacs Lisp, from syntax highlighting
for an obscure language, to a built-in terminal. In fact,
there's even a vi emulation mode
within Emacs (called viper), so you
can still get the modal editing that comes with vi, while having
access to the power of the Emacs
core.

Like vi, there are many variants of
Emacs (termed “emacsen”). However,
the one most commonly used (and the only one in Slackware) is
GNU Emacs. When people reference “Emacs” directly, they almost
always mean GNU Emacs.

Unlike vi,
Emacs operates more like a
traditional editor by default. This means that most keyboard
shortcuts can be performed without repeatedly changing modes.
You can open up a file and start typing away without having to
learn what the modes do, or forgetting which one you are
currently using.

Starting Out

Emacs can be started simply by
running the emacs command in your
terminal. When
you first start it in a console without arguments, you will see
something that resembles this:

Starting Out[bookmark: backto_68][68]

If you are in X windows, Emacs may
start a GUI instead of running in your console. If this is the
case and you don't want a GUI, you can invoke it with the flag
'-nw'.

While here, you can browse around using the
keyboard arrow keys.
Underlined elements are links, and you can activate them by
moving over them and pressing Enter. The documentation
mentioned is very good, and can help you get your bearings
should you have any problems. Also note how they describe key
sequences such as Ctrl+H, meaning press the
h
key while holding down the CTRL key. Same deal
with M-`, meaning to hold the the
Meta key (usually Alt) and
press the backtick ` key. When they say (e.g.) Ctrl+X Ctrl+C, this means to press the x key while holding down
the CTRL key, then press the x key while also
holding down the CTRL key. Conveniently, this
is also one of the more important commands in
Emacs: to close it.

Alternatively, if you call emacs with a
file name as an argument, it will open that file, just like
vi. Upon doing this, you will be
presented with the contents of the file in question. Here, you can
navigate the document using traditional arrow keys and type in
information at will without any issues.

Say you make some edits, and you now want to save your file.
The following key sequence will do that: Ctrl+XCtrl+S.
If you made a new file, you will be prompted for this in what is
called the “minibuffer”, the blank line below the gray line at
the bottom of the screen. Type in the file name of your choice,
then hit Enter. If you don't want to
save the file, you can press Ctrl+G, which aborts
operations that ask for input. Do note that tab-completion is
usually available for operations that use the minibuffer.

Should you want to open a new file within your same
Emacs session, type in Ctrl+XCtrl+F. You will be prompted for a file name in the
minibuffer. Emacs doesn't care
whether it exists or not. If it doesn't exist, a new buffer
will be created for it (the file will be created upon saving
with Ctrl+XCtrl+S), or it will be opened as
expected. However, the old file will still be open! You can
switch back to it using Ctrl+XCtrl+B, entering in
the file's name (or more technically, the buffer's name), then
hitting Enter.

How to Move Around

Like vi,
Emacs is also older than the arrow
keys on your keyboard. Also, like in
vi, using the arrow keys to navigate
files is also supported. While the
vi movement keys are more ergonomic,
emacs's are more “mnemonic”.
However, it is still very possible to operate using the main
Emacs keybindings quickly and
efficiently. Here is a table of the basic movement keybindings:

Emacs Cursor Movement

	Command	Result

	Ctrl+F	Move the cursor one character to the right (forward)

	Ctrl+B	Move the cursor one character to the left (backward)

	Ctrl+N	Move the cursor one line down (next)

	Ctrl+P	Move the cursor one line up (previous)

Of course, like with vi it is also
possible to repeat these commands with a numeric argument. If you
type in M-1 M-0 Ctrl+P, or Ctrl+U 10
Ctrl+P, the cursor will move ten lines up. If you type in
M-5 Ctrl+F or Ctrl+U 5 Ctrl+F, the cursor
will move five characters to the right.

Getting Help

Emacs contains a great deal of
documentation, to the point that it is often called a
“self-documenting” editor. This is because it provides
mechanisms for providing users with documentation while you are
using it.

Here are some useful functions that display documentation (they
all start with Ctrl+H):

Accessing Emacs Documentation

	Command	Result

	Ctrl+H f FUNCTION-NAME Enter	Show documentation for function FUNCTION-NAME

	Ctrl+H k Ctrl+X Ctrl+C	Show documentation for the function bound to the keysCtrl+X Ctrl+C

	Ctrl+H t	Show the Emacs tutorial

	Ctrl+H ?	Show all help-related functions

Ctrl+H t is especially useful if you want or need practice using Emacs.

Calling Functions

As noted earlier, Emacs exports a
large number of functions to for interactive use. Some of
these, like those opening and saving files, are mapped to keys.
Others (like the ones for moving to the beginning and end of
lines) are not. To call them, you have to invoke them. Say we
want to call the function “end-of-line”. We would do
this:

M-x end-of-line Enter

And the cursor would move to the end of the line, as the function name
suggests.

Emacs Cheat Sheet

While Emacs can be simple to use, its scope can easily be
overwhelming. Below are some useful Emacs commands. Some
aspects have been simplified, most notably regarding text
selection. These concepts, and more, are described the
Emacs manual, and various on-line
tutorials. Decent summaries can also be gleaned from web
searches.

Emacs Cheat Sheet

	Command	Result

	Ctrl+F		Move the cursor one character to the right (forward)

	Ctrl+B		Move the cursor one character to the left (backward)

	Ctrl+N		Move the cursor one line down (next)

	Ctrl+P		Move the cursor one line up (previous)

	Ctrl+H f FUNCTION-NAME Enter		Show documentation for function FUNCTION-NAME

	Ctrl+H k Ctrl+X Ctrl+C		Show documentation for the function bound to the keys Ctrl+X Ctrl+C

	Ctrl+H T		Show the Emacs tutorial

	Ctrl+H ?		Show all help-related functions

	M-`		Access the Menu Bar

	Ctrl+G		Cancel the current operation. This is most useful when in the minibuffer.

	M-X FUNCTION-NAME Enter		Call the interactive function FUNCTION-NAME

	M-1 M-0 Ctrl+N		Move the cursor ten lines down

	Ctrl+U 10 Ctrl+N		Move the cursor ten lines down (same as above)

	M-x beginning-of-line		Move the cursor to the beginning of the current line

	M-x end-of-line		Move the cursor to the end of the current line

	M->		Move the cursor to the end of the buffer

	M-<		Move the cursor to the beginning of the buffer

	Ctrl+K		Remove text from the cursor to the end of the line and place it into the kill ring

	Ctrl+Space		Enter selection mode (use normal motion keys to move around). Press C-space again to leave it.

	Ctrl+W		While in selection mode, delete the selected region, and store the result into the kill ring

	M-W		While in selection mode, store the selected region into the kill ring.

	C-Y		“Yanks” the contents of the kill ring and places them at the cursor's location

	Ctrl+/		Undo the previous action. Unlike most other editors, this includes previous undo actions.

	Insert		Enable or disable overwriting characters

	Ctrl+S asdf Enter		Forward incremental search for the string “asdf”. Repeat Ctrl+S as needed to search for future items, or Ctrl+R (below) to search backwards.

	Ctrl+R asdf Enter		Backward incremental search for the string “asdf”. Repeat Ctrl+R as needed to search for future items, or Ctrl+S (above) to search forwards.

	M-% old Enter new Enter		Search for each instance of “old” and prompt you to replace it with “new”. You can force replacement of all items by typing ! at the replacement prompt.

	Ctrl+X Ctrl+C		Exit Emacs, prompting you to save each unsaved buffer before doing so

	Ctrl+X Ctrl+S		Save the currrent buffer to its file

	Ctrl+X Ctrl+W new-file.txt Enter		Save the current buffer to a file “new-file.txt”

Chapter Navigation

Previous Chapter: vi[bookmark: backto_69][69]

Next Chapter: Networking[bookmark: backto_70][70]

Sources

	 Original source: http://www.slackbook.org/beta[bookmark: backto_71][71]

	 Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook,
emacs,
text editor

Networking

Netconfig

Computers aren't very interesting on their own. Sure, you can install
games on them, but that just turns them into glorified entertainment
consoles. Today, computers need to be able to talk to one another; they
need to be networked. Whether you're installing a business network with
hundreds or thousands of computers or just setting up a single PC for
Internet access, Slackware is simple and easy. This chapter should
teach you how to setup typical wired networks. Common wireless setup will
be thoroughly discussed in the next section, but much of what you read
here will be applicable there as well.

There are many different ways to configure your computer to connect to
a network or the Internet, but they fall into two main categories:
static and dymanic. Static addresses are solid; they are set with the
understanding that they will not be changed, at least not anytime soon.
Dynamic addresses are fluid; the assumption is that the address will
change at some time in the future. Typically any sort of network server
requires a static address simply so other machines will know where to
contact it when they need services. Dynamic addresses tend to be used
for workstations, Internet clients, and any machine that doesn't
require a static address for any reason. Dynamic addresses are more
flexible, but present complications of their own.

There are many different kinds of network protocols that you might
encounter, but most people will only ever need to deal with Internet
Protocol (IP). For that reason, we'll focus exclusively on IP in this
book.

Manual Configuration

Ok, so you've installed Slackware, you've setup a desktop, but you
can't get it to connect to the Internet or your business's LAN (local
area network), what do you do? Fortunately, the answer to that
question is simple. Slackware includes a number of tools to configure
your network connection. The first we will look at is the very
powerful ifconfig(8), which is used to
setup or modify the configuration of the most common hardware for
connecting to networks: a Network Interface Card (NIC or
Ethernet Card). ifconfig is an incredibly powerful
tool capable of doing much more than setting IP addresses. For a
complete introduction, you should read its man page. For now, we're
just going to use it to display and change the network addresses of
some ethernet controllers.

darkstar:~# ifconfig
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:699 errors:0 dropped:0 overruns:0 frame:0
TX packets:699 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:39518 (38.5 KiB) TX bytes:39518 (38.5 KiB)
wlan0 Link encap:Ethernet HWaddr 00:1c:b3:ba:ad:4c
inet addr:192.168.1.198 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::21c:b3ff:feba:ad4c/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1630677 errors:0 dropped:0 overruns:0 frame:0
TX packets:1183224 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1627370207 (1.5 GiB) TX bytes:163308463 (155.7 MiB)
wmaster0 Link encap:UNSPEC HWaddr 00-1C-B3-BA-AD-4C-00-00-00-00-00-00-00-00-00-00
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

As you can clearly see here, when run without any arguments,
ifconfig will display all the information it
has on all the ethernet cards (and wireless ethernet cards) present on
your system. The above represents a typical wireless connection from my
laptop, so don't be afraid if what you see on your system doesn't
match. If you don't see any ethX or wlanX interfaces though, the
interface may be down. To show all currently present NICs whether they are
“up” or “down”, simply pass the -a argument.

darkstar:~# ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:19:e3:45:90:44
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:122780 errors:0 dropped:0 overruns:0 frame:0
TX packets:124347 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:60495452 (57.6 MiB) TX bytes:17185220 (16.3 MiB)
Interrupt:16
lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:699 errors:0 dropped:0 overruns:0 frame:0
TX packets:699 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:39518 (38.5 KiB) TX bytes:39518 (38.5 KiB)
wlan0 Link encap:Ethernet HWaddr 00:1c:b3:ba:ad:4c
inet addr:192.168.1.198 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::21c:b3ff:feba:ad4c/4 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1630677 errors:0 dropped:0 overruns:0 frame:0
TX packets:1183224 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1627370207 (1.5 GiB) TX bytes:163308463 (155.7 MiB)
wmaster0 Link encap:UNSPEC HWaddr 00-1C-B3-BA-AD-4C-00-00-00-00-00-00-00-00-00-00
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Notice that the eth0 interface is now listed among the returns.
ifconfig can also change the current
settings on a NIC. Typically, you would need to change the IP address
and subnet mask, but you can change virtually any parameters.

darkstar:~# ifconfig eth0 192.168.1.1 netmask 255.255.255.0
darkstar:~# ifconfig eth0
eth0 Link encap:Ethernet HWaddr 00:19:e3:45:90:44
inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0
UP BROADCAST MULTICAST MTU:1500 Metric:1
RX packets:122780 errors:0 dropped:0 overruns:0 frame:0
TX packets:124347 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:60495452 (57.6 MiB) TX bytes:17185220 (16.3 MiB)
Interrupt:16

If you look carefully, you'll notice that the interface now has the
192.168.1.1 IP address and a 255.255.255.0 subnet mask. We've now setup
the basics for connecting to our network, but we still need to setup a
default gateway and our DNS servers. In order to do that, we'll need to
look at a few more tools.

Next on our stop through networking land is the equally powerful
route(8). This tool is responsible for
modifying the Linux kernel's routing table which affects all data
transmission on a network. Routing tables can become immensely complex
or they can be straight-forward and simple. Most users will only ever
need to setup a default gateway, so we'll show you how to do that here.
If for some reason you need a more complex routing table, you would be
well advised to read the entire man page for
route as well as consulting other sources.
For now, let's take a look at our routing table immediately after
setting up eth0.

darkstar:~# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.1.0 * 255.255.255.0 U 0 0 0 eth0
loopback * 255.0.0.0 U 0 0 0 lo

I won't explain everything here, but the general information should be
easy to pick up if you're familiar with networking at all. The
Destination and Genmask fields specify a range of IP addresses to
match. If a Gateway is defined, information in the form of packets will
be sent to that host for forwarding. We also specify an interface in
the final field that the information should traverse. Right now, we can
only communicate with computers with addresses between 192.168.1.0 and
192.168.1.255 and ourselves through the loopback interface, a type of
virtual NIC that is used for routing information from this computer to
itself. In order to reach the rest of the world, we'll need to
setup a default gateway.

darkstar:~# route add default gw 192.168.1.254
darkstar:~# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.1.0 * 255.255.255.0 U 0 0 0 eth0
loopback * 255.0.0.0 U 0 0 0 lo
default 192.168.1.254 0.0.0.0 UG 0 0 0 eth0

You should immediately notice the addition of a default route. This
specifies what router should be used to reach any addresses that aren't
specified elsewhere in our routing table. Now, when we try to connect
to say, 64.57.102.34, the information will be sent to 192.168.1.254
which is responsible for delivering the data for us. Unfortunately,
we're still not quite through. We need some way of converting domain
names like slackware.com into IP addresses that the computer can use.
For that, we need to make use of a DNS server.

Fortunately, setting up your computer to use an external (or even an
internal) DNS server is very easy. You'll need to use your favorite
text editor and open the /etc/resolv.conf file.
Don't ask me what happened to the e. On my computer,
resolv.conf looks like this.

/etc/resolv.conf
search lizella.net
nameserver 192.168.1.254

Many users won't need the search line. This is used to map hostnames
to domain names. Basically, if I attempt to connect to “barnowl”, the
computer knows to look for “barnowl.lizella.net” thanks to this search
line. We're mainly interested in the nameserver line. This tells
Slackware what domain name servers (DNS) to connect to. Generally
speaking, these should always be specified by IP address. If you know
what DNS servers you should use, you can just add them one at a time to
individual nameserver lines. In fact, I don't know of any practical
limit to the number of nameservers that can be specified in
resolv.conf, so add as many as you like. Once this
is done, you should be able to communicate with other hosts via their
fully qualified domain name.

But Alan! That's a lot of hard work! I don't want to do this time and
again for dozens or even hundreds of machines. You're absolutely right,
and that's why smarter people than you and me created DHCP. DHCP
stands for Dynamic Host Control Protocol and is a method for
automatically configuring computers with unique IP addresses, netmasks,
gateways, and DNS servers. Most of the time, you'll want to use DHCP.
The majority of wireless routers, DSL or cable modems, even firewalls
all have DHCP servers to can make your life much easier. Slackware
includes two main tools for connecting to an exising DHCP server and
can even act as a DHCP server for other computers. For now though,
we're just going to look at DHCP clients.

First on our list is dhcpcd(8), part of the
ISC DHCP utilities. Assuming your computer is physically connected to
your network, and that you have an operating DHCP server on that
network, you can configure your NIC in one shot.

darkstar:~/ dhcpcd eth0

If everything went according to plan, your NIC should be properly
configured, and you should be able to communicate with other computers
on your network, and with the Internet at large. If for some reason,
dhcpcd fails, you may want to try
dhclient(8).
dhclient is an alternative to
dhcpcd and works in basically the same way.

darkstar:~/ dhclient eth0
Listening on LPF/eth0/00:1c:b3:ba:ad:4c
Sending on LPF/eth0/00:1c:b3:ba:ad:4c
Sending on Socket/fallback
DHCPREQUEST on eth0 to 255.255.255.255 port 67
DHCPACK from 192.168.1.254
bound to 192.168.1.198 -- renewal in 8547 seconds.

Why does Slackware include two DHCP clients? Sometimes a particular
DHCP server may be broken and not respond well to either
dhcpcd or
dhclient. In those cases, you can fall back
to the other DHCP client in hopes of getting a valid response from the
server. Traditionally, Slackware uses
dhcpcd, and this works in the vast majority
of cases, but it may become necessary at some point for you to use
dhclient instead. Both are excellent DHCP
clients, so use whichever you prefer.

Automatic Configuration with rc.inet1.conf

Manually configuring interfaces is an important skill to have, but it
can become tedious. No one wants to manually setup their Internet
connection every time the system boots. More importantly, you may not
always have physical access to the machine when it boots. Slackware
makes it easy to automatically configure ethernet (and wireless) cards
at system startup with /etc/rc.d/rc.inet1.conf.
For now, we're going to focus on traditional wired ethernet networking;
the next chapter will discuss various wireless options.

rc.inet1.conf is an incredibly powerful
configuration file, capable of configuring most of your network cards
automatically when Slackware is started. The file is filled with useful
comments, but there is also a man page that more thoroughly discusses
its use. To begin, we're going to look at some of the options used on
one of my personal machines.

Config information for eth0:
IPADDR[0]="192.168.1.250"
NETMASK[=]"255.255.255.0"
USE_DHCP[0]=""
DHCP_HOSTNAME[0]=""
Some lines ommitted.
GATEWAY="192.168.1.254"

This represents most of the information necessary to configure a static
IP address on a single ethernet controller.
netconfig will usually fill in these values
for a single ethernet device for you. If you have multiple network
cards in your machine and need all of them activated automatically at
boot time, then you'll need to edit or add additional entries into this
file in the same manner as above. First, let me go over some of the
basics.

As you may have already guessed, IPADDR[n] is the Internet
Protocol Address for the n network interface card.
Typically, n corrosponds to
eth0, eth1, and so on,
but this isn't always the case. You can specify these values to
pertain to a different network controller with the IFNAME[n]
variable, but we will reserve that for wireless networking[bookmark: backto_72][72],
as it more commonly pertains to wireless network controllers.

Likewise, NETMASK[n] is the subnet mask to use for the network
controller. If these lines are left empty, then static IP addresses
will not be automatically assigned to this network controller. The
USE_DHCP[n] variable tells Slackware
(naturally) to use DHCP to configure the interface.
DHCP_HOSTNAME[n] is rarely used, but some
DHCP servers may require it. In that case, it must be set to a valid
hostname. Finally, we come to the GATEWAY variable. It is actually
set lower in the file than it appears in my example, and it controls
the default gateway to use. You may be wondering why there is no
GATEWAY[n] variable. The answer to that
lies in how Internet Protocol works. I won't go into an in-depth
discussion on that subject, but suffice it to say that there is only
ever one default route that a computer can use no matter how many
interfaces are attached to it.

If you need to use static IP addressing, you will have to obtain a
unique static IP address and the subnet mask for the interface, as
well as the default gateway address, and enter those here. There is no
place to enter DNS information in rc.inet1.conf,
so DNS servers will have to be manually placed into
resolv.conf as discussed in Manual Configuration. Of course, if you use
netconfig, this will be handled for you by
that program. Now let's take a look at another interface on my
computer.

Config information for eth1:
IPADDR[1]=""
NETMASK[1]=""
USE_DHCP[1]="yes"
DHCP_HOSTNAME[1]=""

Here I am telling Slackware to configure eth1 using DHCP. I do not
need to set the IPADDR[1] or
NETMASK[1] variables when using DHCP (in
fact, if they are set, they will be ignored). Slackware will happily
contact a DHCP server as soon as the machine begins to boot.

Chapter Navigation

Previous Chapter: Emacs[bookmark: backto_73][73]

Next Chapter: Wireless Networking[bookmark: backto_74][74]

Sources

	 Original source: http://www.slackbook.org/beta[bookmark: backto_75][75]

	 Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook,
networking,
netconfig,
dhcpcd

Wireless networking

iwconfig

Wireless networking is somewhat more complicated than traditional wired
networking, and requires additional tools for setup. Slackware includes
a diverse collection of wireless networking tools to allow you to
configure your wireless network interface card (WNIC) at the most basic
level. We won't cover everything here, but should give you a solid
foundation to get up and running quickly. The first tool we are going
to look at is iwconfig(8). When run without
any argument, iwconfig displays the current
wireless information on any and all NICs on your computer.

darkstar:~# iwconfig
lo no wireless extensions.
eth0 no wireless extensions.
wmaster0 no wireless extensions.
wlan0 IEEE 802.11abgn ESSID:"nest"
Mode:Managed Frequency:2.432 GHz Access Point:
00:13:10:EA:4E:BD
Bit Rate=54 Mb/s Tx-Power=17 dBm
Retry min limit:7 RTS thr:off Fragment thr=2352 B
Encryption key:off
Power Management:off
Link Quality=100/100 Signal level:-42 dBm
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:0 Invalid misc:0 Missed beacon:0
tun0 no wireless extensions.

Unlike wired networks, wireless networks are “fuzzy”. Their borders are
hard to define, and multiple networks may overlap one another. In order
to avoid confusion, each wireless network has (hopefully) unique
identifiers. The two most basic identifiers are the Extended Service
Set Identifier (ESSID) and the channel or frequency for radio
transmission. The ESSID is simply a name that identifies the wireless
network in question; you may have heard it referred to as the “network
name” or something similar.

Typical wireless networks operate on 11 different frequencies. In
order to connect to even the most basic wireless network, you will
have to setup these two pieces of information, and possibly others,
before setting up things like the WNIC's IP address. Here you can see
that my ESSID is set to “nest” and my laptop is
transmitting at 2.432 GHz. This is all that is required to connect to
an unencrypted wireless LAN. (For any of you out there expecting
to come to my house and use my unencrypted wireless, you should know
that you'll have to break a 2048-bit SSL key before the access point
will let you communicate with my LAN.)

darkstar:~# iwconfig wlan0 essid nest \
freq 2.432G

The freq and channel arguments control basically
the same thing. You only need to use one. If you are unsure what
frequency or channel to use, Slackware can usually figure this out for
you.

darkstar:~# iwconfig wlan0 essid nest \
channel auto

Now Slackware will attempt to connect to the strongest access point on
the “nest” essid operating at any frequency.

Wired Equivalent Protection (or Lack Thereof)

Wireless networking is by its very nature less secure than wired
networking. Having your information travelling on the airwaves makes
it highly susceptible to interception by third parties, so over the
years a number of methods have been devised to make wireless
networking more secure. The first was called Wired Equivilant
Protection, or WEP for short, and fell far short of its goal. If you
are still using WEP today, I encourage you to consider using WPA2 or
some other form of stronger encryption. Attacks against WEP are
trivial and take only minutes to perform. Unfortunately there are
still access points configured for WEP, and you may need to connect to
one from time to time. Connecting to WEP encrypted access points is
fairly simple, particularly if you have the key in hexidecimal
format. We'll need to pass the key argument along with the
password in hexidecimal or ASCII format. If using an ASCII password,
you'll need to prepend it with “s;” but generally
speaking, hexidecimal format is preferred.

darkstar:~# iwconfig wlan0 \
key cf80baf8bf01a160de540bfb1c
darkstar:~# iwconfig wlan0 \
key s:thisisapassword

Wifi Protected Access

Wifi Protected Access (or WPA for short) was the successor for WEP that
aimed to fix several problems with wireless encryption. Unfortunately,
WPA had some flaws as well. An update called WPA2 offers even stronger
protection. At this time, WPA2 is supported by nearly all wireless
network cards and access points, but some older devices may only
support WEP. If you need to secure your wireless network traffic, WPA2
should be considered the minimum level of protection required.
Unfortunately, iwconfig is unable to setup
WPA2 encryption on its own. For that, we need a helper daemon,
wpa_supplicant(8).

Unfortunately, there's no easy way to manually configure a WPA2
protected network; you'll have to edit
/etc/wpa_supplicant.conf directly with a text
editor. Here we will discuss the simplest form of WPA2 protection, the
Pre-Shared Key, or PSK for short. For details on setting up Slackware
to connect to more complicated WPA2 encrypted networks, see the man
page for wpa_supplicant.conf.

/etc/wpa_supplicant.conf
========================
This line enables the use of wpa_cli which is used by rc.wireless
if possible (to check for successful association)
ctrl_interface=/var/run/wpa_supplicant
By default, only root (group 0) may use wpa_cli
ctrl_interface_group=0
eapol_version=1
ap_scan=1
fast_reauth=1
#country=US
WPA protected network, supply your own ESSID and WPAPSK here:
network={
scan_ssid=1
ssid="nest"
key_mgmt=WPA-PSK
psk="secret passphrase"
}

The block of text we're interested in is the network block enclosed by
curly braces. Here we have set the ssid for the network
“nest”, and “secret
passphrase” as the PSK to be used. At this point, WPA2 is properly
configured. You can run wpa_supplicant and
then obtain an IP address via DHCP or set a static address. Of
course, this is a lot of work; there must be an easier way to do this.

rc.inet1.conf revisited

Welcome back to rc.inet1.conf. You're recall
that in networking[bookmark: backto_76][76] we used this configuration file
to automatically configure NICs whenever Slackware boots. Now, we
will use it to configure wifi as well.

Basic Networking Utilities

So you've finally managed to setup your network connection, now what?
How do you know that it's working? How do you know that you set it up
correctly? And just what do you do now that it's setup? Well this
chapter is for you.

Network Diagnostic Tools

Slackware Linux includes a great many networking tools for
troubleshooting and diagnosing network connection troubles, or just for
seeing what's out there on the network. Most of these tools are
command-line tools, so you can run them from a virtual terminal or in a
console window on your graphical desktop. A few of them even have
graphical front-ends, but we're going to deal almost exclusively with
command-line tools for now.

ping

ping(8) is a handy tool for determining if a
computer is operational on your network or on the Internet at large.
You can think of as a type of sonar for computers. By using it, you
send out a “ping” and listen for an echo to determine if another
computer or network device is listening. By default,
ping checks for the remote computer once per
second indefinitely, but you can change the interval between checks and
the total number of checks easily, just check the man page. You can
terminate the application at any time with
CTRL+c. When
ping is finished, it displays a handy
summary of its activity. ping is very useful
for determining if a computer on your network or the Internet is
available, but some systems block the packets
ping sends, so sometimes a system may be
functioning properly, but still not send replies.

darkstar:~# ping -c 3 www.slackware.com
64 bytes from slackware.com (64.57.102.34): icmp_seq=1 ttl=47 time=87.1 ms
64 bytes from slackware.com (64.57.102.34): icmp_seq=2 ttl=47 time=86.2 ms
64 bytes from slackware.com (64.57.102.34): icmp_seq=3 ttl=47 time=86.7 ms
--- slackware.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 86.282/86.718/87.127/0.345 ms

traceroute

traceroute(8) is a handy tool for determining
what route your packets take to reach some other computer. It's mainly
of use for determining which computers are “near” or “far” from you.
This distance isn't strictly geographical, as your Internet Service
Provider may route traffic from your computer in strange ways.
traceroute shows you each router between
your computer and any other machine you wish to connect to.
Unfortunately, many providers, firewalls, and routers will block
traceroute so you might not get a complete
picture when using it. Still, it remains a handy tool for network
troubleshooting.

darkstar:~# traceroute www.slackware.com
traceroute to slackware.com (64.57.102.34), 30 hops max, 46 byte
packets
1gw.ctsmacon.com (192.168.1.254)1.468 ms2.045 ms1.387 ms
210.0.0.1 (10.0.0.1)7.642 ms8.019 ms6.006 ms
368.1.8.49 (68.1.8.49)10.446 ms9.739 ms7.003 ms
468.1.8.69 (68.1.8.69)11.564 ms6.235 ms7.971 ms
5dalsbbrj01-ae0.r2.dl.cox.net (68.1.0.142)43.859 ms43.287 ms 44.125 ms
6dpr1-ge-2-0-0.dallasequinix.savvis.net (204.70.204.146)41.927 ms 58.247 ms44.989 ms
7cr2-tengige0-7-5-0.dallas.savvis.net (204.70.196.29)42.577 ms 46.110 ms43.977 ms
8cr1-pos-0-3-3-0.losangeles.savvis.net (204.70.194.53)78.070 ms 76.735 ms76.145 ms
9bpr1-ge-3-0-0.LosAngeles.savvis.net (204.70.192.222)77.533 ms 108.328 ms120.096 ms
10wiltel-communications-group-inc.LosAngeles.savvis.net (208.173.55.186)79.607 ms76.847 ms75.998 ms
11tg9-4.cr01.lsancarc.integra.net (209.63.113.57)84.789 ms85.436 ms85.575 ms
12tg13-1.cr01.sntdcabl.integra.net (209.63.113.106)87.608 ms 84.278 ms86.922 ms
13tg13-4.cr02.sntdcabl.integra.net (209.63.113.134)87.284 ms 85.924 ms86.102 ms
14tg13-1.cr02.rcrdcauu.integra.net (209.63.114.169)85.578 ms 85.285 ms84.148 ms
15209.63.99.166 (209.63.99.166)84.515 ms85.424 ms85.956 ms
16208.186.199.158 (208.186.199.158)86.557 ms85.822 ms86.072 ms
17sac-main.cwo.com (209.210.78.20)88.105 ms87.467 ms87.526 ms
18slackware.com (64.57.102.34)85.682 ms86.322 ms85.594 ms

telnet

Once upon a time, telnet(1) was the greatest
thing since sliced bread. Basically, telnet
opens an unencrypted network connection between two computers and hands
control of the session to the user rather than some other application.
Using telnet, people could connect to shells
on other computers and execute commands as if they were physically
present. Due to its unencrypted nature this is no longer recommended;
however, telnet is still used for this
purpose by many devices.

Today, telnet is put to better use as a
network diagnostic tool. Because it passes control of the session
directly to the user, it can be used for a great variety of testing
purposes. As long as you know what ASCII commands to send to the
receiving computer, you can do any number of activies, such as read web
pages or check your e-mail. Simply inform
telnet what network port to use, and you're
all set.

darkstar:~$ telnet www.slackware.com 80
Trying 64.57.102.34...
Connected to www.slackware.com.
Escape character is '^]'.
HEAD / HTTP/1.1
Host: www.slackware.com
HTTP/1.1 200 OK
Date: Thu, 04 Feb 2010 18:01:35 GMT
Server: Apache/1.3.27 (Unix) PHP/4.3.1
Last-Modified: Fri, 28 Aug 2009 01:30:27 GMT
ETag: "61dc2-5374-4a973333"
Accept-Ranges: bytes
Content-Length: 21364
Content-Type: text/html

ssh

As we mentioned, telnet may be useful as a
diagnostic tool, but its unencrypted nature makes it a security concern
for shell access. Thankfully, there's the secure shell protocol. Nearly
every Linux, UNIX, and BSD distribution today makes use of OpenSSH, or
ssh(1) for short. It is one of the most
commonly used network tools today and makes use of the strongest
cryptographic techniques. ssh has many
features, configuration options, and neat hacks, enough to fill its own
book, so we'll only go into the basics here. Simply run
ssh with the user name and the host and
you'll be connected to it quickly and safely. If this is the first time
you are connecting to this computer, ssh
will ask you to confirm your desire, and make a local copy of the
encryption key to use. Should this key later change,
ssh will warn you and refuse to connect
because it is possible that some one is attempting to hijack the
connection using what is known as a man-in-the-middle attack.

darkstar:~# ssh alan@slackware.com
alan@slackware.com's password: secret
alan@slackware.com:~$

The user and hostname are in the same form used by e-mail addresses.
If you leave off the username part, ssh will
use your current username when establishing the connection.

tcpdump

So far all the tools we've looked at have focused on making connections
to other computers, but now we're going to look at the traffic itself.
tcpdump(1) (which must be run as root)
allows us to view all or part of the network traffic originating or
received by our computer. tcpdump displays
the raw data packets in a variety of ways with all the network headers
intact. Don't be alarmed if you don't understand everything it
displays, tcpdump is a tool for professional
network engineers and system administrators. By default, it probes the
first network card it finds, but if you have multiple interfaces,
simply use the -i argument to specify which one you're
interested in.You can also limit the data displayed using expressions
and change the manner in which it is displayed, but that is best
explained by the man page and other reference material.

darkstar:~# tcpdump -i wlan0
tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode
listening on wlan0, link-type EN10MB (Ethernet), capture size 96 bytes
13:22:28.221985 IP gw.ctsmacon.com.microsoft-ds > 192.168.1.198.59387:
Flags [P.], ack 838190560, win 3079, options [nop,nop,TS val 1382697489
ecr 339048583], length 164WARNING: Short packet. Try increasing the
snap length by 140
SMB PACKET: SMBtrans2 (REPLY)
13:22:28.222392 IP 192.168.1.198.59387 > gw.ctsmacon.com.microsoft-ds:
Flags [P.], ack 164, win 775, options [nop,nop,TS val 339048667 ecr
1382697489], length 134WARNING: Short packet. Try increasing the snap
length by 110
SMB PACKET: SMBtrans2 (REQUEST)

nmap

Suppose you need to know what network services are running on a
machine, or multiple machines, or you wish to determine if multiple
machines are responsive?You could ping
each one individually, telnet to each port
you're interested in, and note every detail, but that's very tedious
and time consuming. A much easier alternative is to use a port scanner,
and nmap(1) is just the tool for the job.

nmap is capable of scanning TCP and UDP
ports, determining the operating system of a network device, probing
each located service to determine its specific type, and much much
more.Perhaps the simplist way to use nmap
is to “ping” multiple computers at once. You can use network address
notation (CIDR) or specify a range of addresses and
nmap will scan every one and return the
results to you when it's finished. You can even specify host names as
you like.

In order to “ping” hosts, you'll have to use the -sP
argument. The following command instructs
nmap to “ping” www.slackware.com and the 16
IP addresses starting at 72.168.24.0 and ending at 72.168.24.15.

darkstar:~# nmap -sP www.slackware.com 72.168.24.0/28

Should you need to perform a port scan, nmap
has many options for doing just that. When run without any arguments,
nmap performs a standard TCP port scan on all
hosts specified. There are also options to make
nmap more or less aggressive with its
scanning to return results quicker or fool intrusion detection
services. For a full discussion, you should refer to the rather
exhaustive man page. The following three commands perform a regular
port scan, a SYN scan, and a “Christmas tree” scan.

darkstar:~# nmap www.example.com
darkstar:~# nmap -sS www.example.com
darkstar:~# nmap -sX www.example.com

Package Management

Package management is an essential part of any Linux distribution.
Every piece of software included by Slackware, along with many
third-party tools are distributed as source code that can be compiled,
but compiling all those thousands of different applications and
libraries is tedious and time consuming. That's why many people prefer
to install pre-compiled software packages. In fact, when you installed
Slackware, the setup program primarily
worked by running package management tools on a list of packages. Here
we'll look at the various tools used for handling Slackware packages.

pkgtool

The simplest way to perform package maintenance tasks is to invoke
pkgtool(8), a menu-driven interface to some of
the other tools. pkgtool allows you to
install or remove packages as well as view the contents of those
packages and the list of currently installed packages in a
user-friendly ncurses interface.

[image: ../Images/slackbook_pkgtool.png]

pkgtool is a convenient and easy way to
perform the most basic tasks, but for more advanced work more flexible
tools are needed.

Installing, Removing, and Upgrading Packages

While pkgtool scores points for convenience,
installpkg(8) is much more capable of
handling odd tasks, such as quickly installing a single package,
installing an entire disk set of packages, or scripting an install.
installpkg takes a list of packages to
install, and simply installs them without asking any questions. Like
all Slackware package management tools, it assumes that you know what
you're doing and doesn't pretend to be smarter than you. In its
simplest form, installpkg simply takes a
list of packages to install, and does exactly what you would expect.

darkstar:~# installpkg blackbox-0.70.1-i486-2.txz
Verifying package blackbox-0.70.1-i486-2.txz.
Installing package blackbox-0.70.1-i486-2.txz:
PACKAGE DESCRIPTION:
blackbox (Blackbox window manager)
#
Blackbox is that fast, light window manager you have been looking for
without all those annoying library dependencies.
#
Also included in this package is the bbkeys utility for controlling
keyboard shortcut commands from within Blackbox.
#
The Blackbox home page is http://blackboxwm.sourceforge.net
#
Package blackbox-0.70.1-i486-2.txz installed.

You can of course install multiple packages at a time, and in fact use
shell wild cards.The following installs all of the “N” series
packages from a mounted CD-ROM:

darkstar:~# installpkg /mnt/cdrom/slackware/n/*.txz

At any given time, you can see what packages are installed on your
system by listing the contents of /var/log/packages,
which lists not only every application on your system but also the
version number. Should you want to know what individual files were
installed as a part of that package, cat
the contents of the package:

darkstar:~#cat /var/log/packages/foo-1.0-x86_64.txz

This will return everything from the size of the package, a
description of what it does, and the name and location of every file
installed as a part of the package.

Removing a package is every bit as easy as installing one. As you
might expect, the command to do this is
removepkg(8). Simply tell it which
packages to remove, and removepkg will
check the contents of the package database and remove all the files
and directories for that package with one caveat. If that file is
included in multiple installed packages, it will be skipped and if a
directory has new files in it, the directory will be left in
place. Because of this, removing packages takes a good while longer
than installing them.

darkstar:~# removepkg blackbox-0.70.1-i486-2.txz

Finally, upgrading is just as easy with (you guessed it),
upgradepkg(8) which first installs a new
package, then removes whatever files and directories are left-over from
the old package. One important thing to remember is that
upgradepkg doesn't check to see if the
previously installed package has a higher version number than the “new”
package, so it can also be used to downgrade to older versions.

darkstar:~# upgradepkg blackbox-0.70.1-i486-2.txz
+==
| Upgrading blackbox-0.65.0-x86_64-4 package using
./blackbox-0.70.1-i486-2.txz
+==
Pre-installing package blackbox-0.70.1-i486-2...
Removing package
/var/log/packages/blackbox-0.65.0-x86_64-4-upgraded-2010-02-23,16:50:51...
--> Deleting symlink /usr/share/blackbox/nls/POSIX
--> Deleting symlink /usr/share/blackbox/nls/US_ASCII
--> Deleting symlink /usr/share/blackbox/nls/de
--> Deleting symlink /usr/share/blackbox/nls/en
--> Deleting symlink /usr/share/blackbox/nls/en_GB
...
Package blackbox-0.65.0-x86_64-4 upgraded with new package
./blackbox-0.70.1-i486-2.txz.

All of these tools have useful arguments. For example, the
–root to installpkg will install
packages into an arbitrary directory. The –dry-run argument
will instruct upgradepkg to simply tell you
what it would attempt without actually making any changes to the
system. For complete details, you should (as always) refer to the man
pages.

Package Compression Formats

In the past, all Slackware packages were compressed with the
gzip(1) compression utility, which was a
good compromise between compression speed and size.Recently, new
compression schemes have been added and the package management tools
have been upgraded to handle these. Today, official Slackware
packages are compressed with the xz
utility and end with .txz extensions.Older packages (and many
third party packages) still use the .tgz extension.

It's worth emphasizing that .tgz and .txz (or, more succinctly, .t?z
files) are very standard, non-unique extensions for compressed .tar
files. This has many advantages; they're easy to build on nearly any
UNIX system (many other package formats require special toolchains),
and they're just as simple to de-construct.

However, it is also important to realize that just because all Slackware
packages are .t?z files, not all .t?z files are
Slackware packages. Installpkg won't
magically install just any .t?z file, only Slackware packages.

slackpkg

Slackpkg is an automated tool for
management of Slackware Linux Packages. It originally appeared in
/extra for the release of slackware-12.1, and since the release
of slackware-12.2 it has been included in the ap/ series of a
base installation.

Just as you are able to use installpkg to
install Slackware packages from the /extra directory included on
the install media, you can use slackpkg
to pull packages from the Internet and install them. This is
particularly useful for security updates or significant application
upgrades that are posted to the Slackware servers, some of which you
may want to start using on your own system.

Without slackpkg, the process would be:

	 Notice in the Slackware changelog that an update has been released.

	 Look on your local Slackware mirror to find a download link of the package.

	 Download the package from a Slackware mirror to your hard drive.

	 Use either installpkg or pkgtool to install the downloaded package.

With slackpkg, this is reduced to:

	 Notice in the Slackware changelog that an update for foo has been released.

	 slackpkg install foo

Clearly, this streamlines a fairly common task.

To use slackpkg, configure your system
with a Slackware mirror by editing
/etc/slackpkg/mirrors as root. Find
the mirror that is associated with your Slackware version and
architecture, and uncomment it. This list of mirrors offers ftp and
http access, but you must uncomment only one
mirror.

Once a mirror has been selected, update the list of remote files by
issuing the initial command slackpkg update. This
should be done any time you notice that a new package has been
posted (regularly checking in with the Slackware changelog is
recommended; see Chapter 18, Keeping Track of Updates[bookmark: backto_84][84] for more information).

To search for a package, use slackpkg search foo,
and to install use slackpkg install foo.

Once a package has been installed with
slackpkg, it can be removed or upgraded
using pkgtool and the other package
management commands as detailed inInstalling, Removing, and Upgrading Packages.

For more information see the man pages
for slackpkg(8) and slackpkg.conf(5), and see its website at http://www.slackpkg.org/[bookmark: backto_85][85]

rpm2tgz

One of the most ubiquitous package formats for Linux software is
RPM; it's not uncommon to find a developer offering their
application for download as either source code or an RPM file, and
no more. In this case, you would have three options:

	 Build your own Slackware package.

	 Compile and install directly from source code.

	 Convert and install from RPM.

Building from source code or creating your own Slackware package is
usually not as complex as you might think but installing directly from
source code is generally discouraged because there is no easy way to
track what has been installed on your system after issuing the
make install command. Building your own Slackware
packages is outside the scope of this chapter. So this leaves us with
the helpful tool rpm2tgz.

rpm2tgz converts RPM packages into a
Slackware package that can then be installed via
pkgtool or
installpkg. This circumvents the need to
create your own Slackware package but grants you the benefit of
being able to remove, update, and track what you've installed.

Keeping Track of Updates

The -stable Branch

After a new version of Slackware is released, the Slackware team will,
as needed, release updated packages to fix serious security
vulnerabilities and particularly nasty bugs. Therefore, it's
important to keep up with all of the patches for your version of
Slackware, which is referred to as the -stable
branch. There is also a -current branch, which
is where we do our development work toward the next stable release
(and as such, there are often intrusive changes there), but unless
you're willing to work with a possibly broken system and are able to
fix things on your own, we strongly recommend that you stick with the
-stable branch.

Since -stable updates aren't distributed on the disks, you'll need to
obtain them from the Internet. Many people and organizations offer
mirrors from which you can download the entire Slackware tree (or only
the patches/ directory) in any number of
ways. While some mirrors offer web access, the most common ways of
obtaining updates are via ftp and/or rsync servers. The Slackware
project maintains a small list (organized by country) of known
mirrors. If you're unsure which mirror to use, simply consult http://www.slackware.com/getslack/[bookmark: backto_89][89]
for suggestions. If you have a major university near you, there's a
good chance that they offer a mirror of numerous open source projects,
and Slackware may be among them. The only real requirement for a
mirror is that it be complete; usually it's best to use a mirror near
where you live in order to achieve the fastest transfer times and use
the least amount of Internet resources.

So how do you know when there are updates? The best way is to consult the
ChangeLog.txt on any up-to-date mirror. You can always
find the latest changelogs for the -current and most recent -stable
branch on the Slackware Project's web page, but if you're running an older
version of Slackware, you'll need to check a mirror.

darkstar:~# wget -O - \
ftp://slackware.osuosl.org/pub/slackware/slackware64-current/ChangeLog.txt \
| less
Thu Aug 16 04:01:31 UTC 2012
Getting close! Hopefully we've cleared out most of the remaining issues
and are nearly ready here. We'll call this release candidate 2.
Unless there's a very good rationale, versions are frozen.
Any reports of remaining bugs will be gladly taken, though.
#include <more/cowbell.h>
a/aaa_base-14.0-x86_64-4.txz: Rebuilt.
Remove mention of HAL in the initial welcome email (mention udisks2
instead). Thanks to Dave Margell.
a/bash-4.2.037-x86_64-1.txz: Upgraded.

Security Update Mailing List

While the Slackware team does release updated bugfix-only packages (i.e.
not security fixes) occasionally, you're probably most interested in
security fixes for vulnerabilities discovered after the -stable release.
The Slackware Project maintains a mailing list that will notify you of any
updated packages for such serious issues. In order to subscribe to the
mailing list, send an e-mail to majordomo@slackware.com[bookmark: backto_90][90]
with the words subscribe slackware-security in the body of the message.
The majordomo will be happy to add your name to the list, and when new
packages are released, it will mail an advisory to you.

Upgrading Slackware Versions

Now that we've gone this far, you should feel reasonably competent in your
ability to manage your Slackware system. But what do we do with it when
there's a new release? Updating from one release of Slackware to another
is a lot more complicated than simply updating a few packages. Each release
changes a lot of things, and while many of these changes are small, some of
them can completely break your system if you haven't prepared for them and/or
don't understand what is changing and why. While some Linux distributions
provide highly automated tools that attempt to handle every tiny detail for
you, Slackware takes a much more hands-on approach to things.

The very first thing you should do before attempting an upgrade is the one
that many people neglect: decide if it's really necessary to upgrade. If
the old system is stable and doing everything you want it to do, there may
be no need to do an operating system upgrade at all.

Assuming you decide to do the upgrade, then the second thing you
should do is read the CHANGES_AND_HINTS.TXT file
on your upgrade discs or a mirror. This file is updated during the
development period before every release, and it lists a lot of helpful
hints and tips to aid you in dealing with the changes.

Finally, read the UPGRADE.TXT file before
proceeding. After doing these things, you may decide that it's less
trouble and potential for problems to backup your configuration files
and data and do a fresh installation of the new Slackware release
rather than attempt a possibly tricky upgrade. However, if you still
wish to continue, make backups of your data and configuration files
first. At a minimum, it's good practice to backup the
/etc and /home directories.
This will give you a chance to perform a reinstall if something goes
wrong with the upgrade.

Since every new version of Slackware has a few differences, giving complete
instructions here is not only futile but potentially misleading. You should
always consult the documentation included on your Slackware disks or your
favorite mirror.

Chapter Navigation

Previous Chapter: Package Management[bookmark: backto_91][91]

Next Chapter: The Linux Kernel[bookmark: backto_92][92]

Sources

	 Original source: http://www.slackbook.org/beta[bookmark: backto_93][93]

	 Originally written by Alan Hicks, Chris Lumens, David Cantrell, Logan Johnson

slackbook,
package management

The Linux Kernel

What Does the Kernel Do?

You've probably heard people talking about compiling the kernel or
building a kernel, but what exactly is the kernel and what does it do?
The kernel is the center of your computer. It is the foundation for the
entire operating system. The kernel acts as a bridge between the
hardware and the applications. This means that the kernel is (usually)
the sole piece of software responsible for ordering around the hardware
components of your computer. It is the kernel that instructs the hard
drive to search for a certain data stream. It is the kernel that
instructs your network card to transmit rapid changes in voltage. The
kernel also listens to hardware as well. When the network card detects
a remote computer sending information, it forwards that information to
the kernel. This makes the kernel both the single most important piece
of software on your computer and the most complex.

Working with Modules

The complexity of a modern linux kernel is staggering. The source code
for the kernel weighs in at nearly 400MB uncompressed. There are
thousands of developers, hundreds of options, and if everything were
built together, the kernel would soon pass 100MB in size itself. In
order to keep the size of the kernel down (as well as the amount of RAM
needed for the kernel), most of the kernel options are built as
modules. You can think of these modules as device drivers which can be
inserted or removed from a running kernel at will. In truth, many of
them aren't device drivers at all, but contain support for things such
as network protocols, security measures, and even filesystems. In
short, nearly any piece of the linux kernel can be built as a loadable
module.

It's important to realize that Slackware will automatically handle
loading most modules for you. When your system boots,
udevd(8) is started and begins to probe your
system's hardware. For each device it finds, it loads the proper module
and created a device node in /dev. This usually
means that you will not need to load any modules in order to use your
computer, but occasionally this is necessary.

So what modules are currently loaded on your computer and how do we
load and unload them? Fortunately we have a full suite of tools for
handling this. As you might have guessed, the tool for listing modules
is lsmod(8).

darkstar:~# lsmod
Module Size Used by
nls_utf8 1952 1
cifs 240600 2
i915 168584 2
drm 168128 3 i915
i2c_algo_bit 6468 1 i915
tun 12740 1
... many more lines ommitted ...

In addition to showing you what modules are loaded, it displays the
size of each module and tells you what other modules are using it.

There are two applications for loading modules:
insmod(8) and
modprobe(8). Both will load modules and
report any errors (such as loading a module for a device that isn't
present in your system), but modprobe is
preferred because it can load any module dependencies. Using either is
straight-forward.

darkstar:~# insmod ext3
darkstar:~# modprobe ext4
darkstar:~# lsmod | grep ext
ext4 239928 1
jbd2 59088 1 ext4
crc16 1984 1 ext4
ext3 139408 0
jbd 48520 1 ext3
mbcache 8068 2 ext4,ext3

Removing modules can be a tricky process, and once again we have two
programs for removing them: rmmod(8) and
modprobe. In order to remove a module with
modprobe, you'll need to use the -r argument.

darkstar:~# rmmod ext3
darkstar:~# modprobe -r ext4
darkstar:~# lsmod | grep ext

Compiling A Kernel and Why to do So

Most Slackware users will never need to compile a kernel. The huge and
generic kernels contain virtually all the support you will need.

However, some users may need to compile a kernel. If your computer
contains bleeding edge hardware, a newer kernel may offer improved
support. Sometimes a kernel patch may be available that corrects a
problem you are experiencing. In these cases a kernel compile is
probably warranted. Users who simply want the latest and greatest
version or who believe using a custom compiled kernel will give them
greater performance can certainly upgrade, but are unlikely to
actually notice any major changes.

If you still think compiling your own kernel is something you want or
need to do, this section should walk you through the many steps.
Compiling and installing a kernel is not that difficult, but there are
a number of mistakes that can be made along the way, many of which can
prevent your computer from booting and cause major frustration.

The first step is ensuring you have the kernel source code installed
on your system. The kernel source package is included in the
“k” disk set in the Slackware installer, or you can download
another version from http://www.kernel.org/[bookmark: backto_94][94].
Traditionally, the kernel source is located in
/usr/src/linux, a symbolic link that
points to the specific kernel release used, but this is by no means
set in stone. You can place the kernel source code virtually anywhere
without encountering any problems.

darkstar:~# ls -l /usr/src
lrwxrwxrwx 1 root root 14 2009-07-22 19:59 linux -> linux-2.6.29.6/
drwxr-xr-x 23 root root 4096 2010-03-17 19:00 linux-2.6.29.6/

The most difficult part of any kernel compile is the kernel
configuration. There are hundreds of options, many of which can
optionally be compiled into modules. This means there are thousands of
ways to configure a kernel. Fortunately, there are a few handy tricks
that can keep you from running into too much trouble. The kernel
configuration file is .config. If you are very
brave, you can manually edit this file with a text editor, but I highly
recommend you use the kernel's built-in tools for manipulating
.config.

Unless you are very familiar with configuring kernels, you should
always start with a solid base configuration and modify it. This
prevents you from skipping an important option that might force you to
compile the kernel again and again until you get it right. The best
kernel .config files to start with are those used
by Slackware's default kernels. You can find them on your Slackware
install disks or at your favorite mirror in the
kernels/ directory.

darkstar:~# mount /mnt/cdrom
darkstar:~# cd /mnt/cdrom/kernels
darkstar:/mnt/cdrom/kernels# ls
VERSIONS.TXT huge.s/ generic.s/ speakup.s/
darkstar:/mnt/cdrom/kernels# ls genric.s
System.map.gz bzImage config

You can replace the default .config file easily by
copying or downloading the config file for the
kernel you wish to use as a base. Here I am using Slackware's
recommended generic.s kernel for a base, but you may wish to use the
huge.s config file. The generic kernel builds more things as modules
and thus creates a smaller kernel image, but it usually requires the
use of an initrd.

darkstar:/mnt/cdrom/kernels# cp generic.s/config /usr/src/linux/.config

Footnotes

[bookmark: [[_slackbook_start.html][[_slackbook_start.html

[1] http://www.slackbook.org/

[2] http://docs.slackware.com/doku.php?id=slackbook:conventions_used_in_this_book

[3] http://docs.slackware.com/doku.php?id=slackbook:intro_to_slackware

[4] http://docs.slackware.com/doku.php?id=slackbook:install

[5] http://docs.slackware.com/doku.php?id=slackbook:booting

[6] http://docs.slackware.com/doku.php?id=slackbook:shell

[7] http://docs.slackware.com/doku.php?id=slackbook:bash

[8] http://docs.slackware.com/doku.php?id=slackbook:process_control

[9] http://docs.slackware.com/doku.php?id=slackbook:xwindow_system

[10] http://docs.slackware.com/doku.php?id=slackbook:printing

[11] http://docs.slackware.com/doku.php?id=slackbook:users

[12] http://docs.slackware.com/doku.php?id=slackbook:filesystem_permissions

[13] http://docs.slackware.com/doku.php?id=slackbook:working_with_filesystems

[14] http://docs.slackware.com/doku.php?id=slackbook:vi

[15] http://docs.slackware.com/doku.php?id=slackbook:emacs

[16] http://docs.slackware.com/doku.php?id=slackbook:network

[17] http://docs.slackware.com/doku.php?id=slackbook:wifi

[18] http://docs.slackware.com/doku.php?id=slackbook:basic_networking_utilities

[19] http://docs.slackware.com/doku.php?id=slackbook:package_management

[20] http://docs.slackware.com/doku.php?id=slackbook:tracking_updates

[21] http://docs.slackware.com/doku.php?id=slackbook:linux_kernel

[22] http://www.slackbook.org/beta

[bookmark: [[_slackbook_conventions_used_in_this_book.html][[_slackbook_conventions_used_in_this_book.html

[23] http://slackbook.org/

[bookmark: [[slackbook_intro_to_slackware.html][[slackbook_intro_to_slackware.html

[24] http://docs.slackware.com/doku.php?id=slackbook:package_management

[25] http://fsf.org

[26] http://docs.slackware.com/doku.php?id=slackbook:install

[27] http://www.slackbook.org/beta

[bookmark: [[_slackbook_install.html][[_slackbook_install.html

[28] http://docs.slackware.com/doku.php?id=slackbook:network

[29] http://docs.slackware.com/doku.php?id=slackbook:users

[30] http://docs.slackware.com/doku.php?id=slackbook:intro_to_slackware

[31] http://docs.slackware.com/doku.php?id=slackbook:booting

[32] http://www.slackbook.org/beta

[bookmark: [[_slackbook_booting.html][[_slackbook_booting.html

[33] http://docs.slackware.com/doku.php?id=slackbook:install

[34] http://docs.slackware.com/doku.php?id=slackbook:install

[35] http://docs.slackware.com/doku.php?id=slackbook:install

[36] http://docs.slackware.com/doku.php?id=slackbook:install

[37] http://docs.slackware.com/doku.php?id=slackbook:shell

[38] http://www.slackbook.org/beta

[bookmark: [[_slackbook_shell.html][[_slackbook_shell.html

[39] http://docs.slackware.com/doku.php?id=slackbook:bash

[40] http://docs.slackware.com/doku.php?id=slackbook:booting

[41] http://docs.slackware.com/doku.php?id=slackbook:bash

[42] http://www.slackbook.org/beta

[bookmark: [[_slackbook_bash.html][[_slackbook_bash.html

[43] http://docs.slackware.com/doku.php?id=slackbook:shell

[44] http://docs.slackware.com/doku.php?id=slackbook:process_control

[45] http://www.slackbook.org/beta

[bookmark: [[_slackbook_process_control.html][[_slackbook_process_control.html

[46] http://docs.slackware.com/doku.php?id=slackbook:bash

[47] http://docs.slackware.com/doku.php?id=slackbook:xwindow_system

[48] http://www.slackbook.org/beta

[bookmark: [[_slackbook_xwindow_system.html][[_slackbook_xwindow_system.html

[49] http://docs.slackware.com/doku.php?id=slackbook:process_control

[50] http://docs.slackware.com/doku.php?id=slackbook:printing

[51] http://www.slackbook.org/beta

[bookmark: [[_slackbook_printing.html][[_slackbook_printing.html

[52] http://localhost:631

[53] http://docs.slackware.com/doku.php?id=slackbook:xwindow_system

[54] http://docs.slackware.com/doku.php?id=slackbook:users

[55] http://www.slackbook.org/beta

[bookmark: [[_slackbook_users.html][[_slackbook_users.html

[56] http://docs.slackware.com/doku.php?id=slackbook:printing

[57] http://docs.slackware.com/doku.php?id=slackbook:filesystem_permissions

[58] http://www.slackbook.org/beta

[bookmark: [[_slackbook_filesystem_permissions.html][[_slackbook_filesystem_permissions.html

[59] http://docs.slackware.com/doku.php?id=slackbook:users

[60] http://docs.slackware.com/doku.php?id=slackbook:working_with_filesystems

[61] http://www.slackbook.org/beta

[bookmark: [[_slackbook_working_with_filesystems.html][[_slackbook_working_with_filesystems.html

[62] http://docs.slackware.com/doku.php?id=slackbook:filesystem_permissions

[63] http://docs.slackware.com/doku.php?id=slackbook:vi

[64] http://www.slackbook.org/beta

[bookmark: [[_slackbook_vi.html][[_slackbook_vi.html

[65] http://docs.slackware.com/doku.php?id=slackbook:working_with_filesystems

[66] http://docs.slackware.com/doku.php?id=slackbook:emacs

[67] http://www.slackbook.org/beta

[bookmark: [[_slackbook_emacs.html][[_slackbook_emacs.html

[68] http://docs.slackware.com/doku.php?id=slackbook:emacs-startup.png

[69] http://docs.slackware.com/doku.php?id=slackbook:vi

[70] http://docs.slackware.com/doku.php?id=slackbook:network

[71] http://www.slackbook.org/beta

[bookmark: [[_slackbook_network.html][[_slackbook_network.html

[72] http://docs.slackware.com/doku.php?id=slackbook:wifi

[73] http://docs.slackware.com/doku.php?id=slackbook:emacs

[74] http://docs.slackware.com/doku.php?id=slackbook:wifi

[75] http://www.slackbook.org/beta

[bookmark: [[_slackbook_wifi.html][[_slackbook_wifi.html

[76] http://docs.slackware.com/doku.php?id=slackbook:network

[77] http://docs.slackware.com/doku.php?id=slackbook:network

[78] http://docs.slackware.com/doku.php?id=slackbook:network

[79] http://docs.slackware.com/doku.php?id=slackbook:basic_networking_utilities

[80] http://www.slackbook.org/beta

[bookmark: [[_slackbook_basic_networking_utilities.html][[_slackbook_basic_networking_utilities.html

[81] http://docs.slackware.com/doku.php?id=slackbook:wifi

[82] http://docs.slackware.com/doku.php?id=slackbook:package_management

[83] http://www.slackbook.org/beta

[bookmark: [[_slackbook_package_management.html][[_slackbook_package_management.html

[84] http://docs.slackware.com/doku.php?id=slackbook:tracking_updates

[85] http://www.slackpkg.org/

[86] http://docs.slackware.com/doku.php?id=slackbook:basic_networking_utilities

[87] http://docs.slackware.com/doku.php?id=slackbook:tracking_updates

[88] http://www.slackbook.org/beta

[bookmark: [[_slackbook_tracking_updates.html][[_slackbook_tracking_updates.html

[89] http://www.slackware.com/getslack/

[90] mailto:majordomo@slackware.com

[91] http://docs.slackware.com/doku.php?id=slackbook:package_management

[92] http://docs.slackware.com/doku.php?id=slackbook:linux_kernel

[93] http://www.slackbook.org/beta

[bookmark: [[_slackbook_linux_kernel.html][[_slackbook_linux_kernel.html

[94] http://www.kernel.org/

[95] http://docs.slackware.com/doku.php?id=slackbook:tracking_updates

[96] http://www.slackbook.org/beta

OEBPS/Images/slackbook_slackmetal.jpg
] lackware
2 —m inux

OEBPS/Images/slackbook_pine.png
ALPINE 2.02(1266) MAIN MENU Folder: INBOX No Messages

HELP Get help using Alpine

COMPOSE MESSAGE Compose and send a message
MESSAGE INDEX View messages in current folder
FOLDER LIST Select a folder to view
ADDRESS BOOK Update address book

SETUP Configure Alpine Options

QuUIT Leave the Alpine program

Copyright 2006-2008 University of Washington
Copyright 2009-2010 Re-Alpine Project
[Folder "INBOX" opened with 0 messages]

? HELP P PrevCmd R RelNotes
O OTHER CMDS > [ListFoldrs]) N NextCmd K KBlock

OEBPS/Images/slackbook_links.png
The Slackware Linux Project (pl of 15)

The Slackware Linux Project Slackva
News Slackware 13.0 is released!
After one of the most intensive 2009-08-27
Security periods of development in
Advisories Slackware's history, the long
awaited stable release of Slackware
FAQ 13.0 is ready. This release brings
with it many major changes since
Book Slackware 12.2, including a
completely reworked collection of X
General Info packages (a configuration file for
X is no longer needed in most
Get Slack cases), major upgrades to the
desktop environments (KDE version
Install Help 4.2.4 and Xfce version 4.6.1), a
new .txz package format with much
Configuration better compression, and other
upgrades all around -- to the
Packages development system, network
services, libraries, and major
ChangeLogs applications like Firefox and
Thunderbird. We think you'll agree

http://www.slackware.com/index.htm}

OEBPS/Images/slackbook_lynx.png
Google
Web Images Videos Maps News Shopping Gmail more »
iGoogle | Settings | Sign in

Google

Google Search I'm Feeling Lucky Advonccd oeorch
Language Tools

Advertising Programs - Business Solutions - About Google

©2010 - Privacy

Arrow keys: Up and Down to move. Right to follow a link; Left to go back
H)elp 0)ptions P)rint G)o M)ain screen Q)uit /=search [deletel=history list [

OEBPS/Images/slackbook_wicd.png

OEBPS/Images/slackbook_cups-01.png
- Home - CUPS

0 - Mozilla Firefox T e 0%

Fle Edit View History Bookmarks Tools Help

€« -2086 http:/focalhost:631/ ~ | [& ¥ [slackBuilds.org Q@ ~
€ Home - CUPS 13.10 X |+ v
%« X Common UNIX Printing System 1.3.10 N

[EETM Administration ¥ Classes § Documentation/Help ¥ Jobs § Printers |

Welcome!

These web pages allow you to monitor your printers and jobs as well as perform system administration tasks. Click on any of the tabs above or on the buttons
below to perform a task

add Class 3 Add Printer anage Jobs 3 Manage Printers

If you are asked for a username and password, enter your login username and password or the “root" username and password.

About CUPS
=— CUPS provides a portable printing layer for UNIX"-based operating systems. Itis developed and maintained by Apple Inc. to
promote a standard printing solution. CUPS is the standard printing system used on MacOS* X and most Linux” distributions
CUPS uses the Internet Printing Protocol (“IPP") as the basis for managing print jobs and queues and adds network printer ||

@ browsing and PostScript Printer Description ("PPD") based printing options to support real-world printing.

For Printer Drivers and Assistance =
Done

OEBPS/Images/slackbook_xwmconfig.png
SELECT DEFAULT WINDOW MANAGER FOR X-
Please select the default window manager to use with the X Window
System. This will define the style of graphical user interface the
computer uses. KDE provides the most features, and people with
Windows or MacOS experience will find it easy to use. Other window
managers are easier on system resources, or provide other unique
features

xinitrc. kdel KDE: K Desktop Environment
initrc.xfce The Cholesterol Free Desktop Environment
x . The fluxbox window manager

x . The blackbox window manager

) TSRS indouiaker

initrc. fvwm2 F(?) Virtual Window Manager (version 2.xx)
initrc.twn Tab Window Manager (very basic)

< K > <Cancel>

OEBPS/Images/slackbook_epub_cover.png
The Slack Book

The Slackware Documentation Project

slackwgl:g

http://docs.slackware.com/slackbook:start

OEBPS/Images/slackbook_setup-xwmconfig.png
SELECT DEFAULT WINDOW MANAGER FOR X
Please select the default window manager to use with the X Window
System. This will define the style of graphical user interface the
computer uses. KDE provides the most features, and people with
Windows or MacOS experience will find it easy to use. Other window
managers are easier on system resources, or provide other unique
features.
xinitrc.kde KDE: K Desktop Environment
xinitrc.xfce The Cholesterol Free Desktop Environment
xinitrc.fluxbox The fluxbox window manager
xinitrc.blackbox The blackbox window manager
xinitrc.wmaker WindowMaker

xinitrc.fvwm2 F(?) Virtual Window Manager (version 2.xx)
xinitrc.twm Tab Window Manager (very basic)

OEBPS/Images/slackbook_setup-timezone.png
TIMEZONE CONFIGURATION
Please select one of the following timezones
for your machine:

US/Alaska
US/Aleutian
US/Arizona
US/Central
US/East-Indiana
US/Eastern

US/Hawaii
US/Indiana-Starke
US/Michigan
US/Mountain

OEBPS/Images/slackbook_setup-mouse.png
MOUSE CONFIGURATION
This part of the configuration process will create a /dev/mouse link
pointing to your default mouse device. You can change the /dev/mouse
link later if the mouse doesn't work, or if you switch to a different

type of pointing device. We will also use the information about the
mouse to set the correct protocol for gpm, the Linux mouse server.
Please select a mouse type from the list below:

PS/2 port (most desktops and laptops)
USB connected mouse

Microsoft PS/2 Intellimouse
Intellimouse Explorer PS/2

2 button Microsoft compatible serial mouse
3 button Microsoft compatible serial mouse

OEBPS/Images/slackbook_setup-lilo.png
L LILO
LILO (Linux Loader) is a generic boot loader. There's a simple
installation which tries to automatically set up LILO to boot
Linux (also Windows if found). For more advanced users,
the expert option offers more control over the installation
process. Since LILO does not work in all cases (and can damage
partitions if incorrectly installed), there's the third (safe)
option, which is to skip installing LILO for now. You can
always install it later with the 'liloconfig' command. Which

option would you like?

simple Try to install LILO automatically
expert Use expert lilo.conf setup menu
skip Do not install LILO

OEBPS/Images/slackbook_usb-boot-stick.png
MAKE USB FLASH BOOT:
If your computer supports booting from a USB device, it is
recommended that you make a USB boot stick for your system at this
time. It will boot your computer straight into the root filesystem

on /dev/sdal.

Please insert a USB flash memory stick and then press ENTER to
create a boot stick.

WARNING! The existing contents of the USB stick will be erased.

Make a USB Linux boot stick
Skip making a USB boot stick

Create
Skip

OEBPS/Images/slackbook_setup-install.png
SELECT PROMPTING MODE
Now you must select the type of prompts you'd like to see during the
installation process. if you have the drive space, the 'full’ option is
quick, easy, and by far the most foolproof choice. The ‘newbie’ mode
provides the most information but is much more time-consuming
(presenting the packages one by one) than the menu-based choices.
Otherwise, you can pick packages from menus using 'expert’ or ‘menu’
mode. Which type of prompting would you like to use?

Install everything (5.7+ GB of software, RECOMMENDED!)
Choose individual packages from interactive menus

This is actually the same as the "menu” option

Use verbose prompting (the X series takes one year)

Use custom tagfiles in the package directories
Use tagfiles in the subdirectories of a custom path
Read the prompt mode help file

OEBPS/Images/slackbook_setup-select.png
PACKAGE SERIES SELECTION
Now it's time to select which general categories of software to install

on your system. Use the spacebar to select or unselect the software

you wish to install. You can use the up and down arrows to see all the
possible choices. Recommended choices have been preselected. Press
the ENTER key when you are finished.

Base Linux system

Various Applications that do not need X
Program Development (C, C++, Lisp, Perl, etc.)
GNU Emacs

FAQ lists, HOWTO documentation

Linux kemel source

Qt and the K Desktop Environment for X
International language support for KDE
System Libraries (needed by KDE, X, and more)

OEBPS/Images/slackbook_setup-source.png
SOURCE MEDIA SELECTION
Please select the media from which to install Slackware Linux:

Install from a Slackware CD or DVD
Install from a hard drive partition

Install from NFS (Network File System)
Install from FTP/HTTP server

Install from Samba share
Install from a pre-mounted directory

OEBPS/Images/slackbook_setup-target.png
Select Linux installation partition:
Please select a partition from the following list to use for your
root (/) Linux partition.

/dev/sdal Linux 10490413K
/dev/sda3 Linux 14659312K
.- (done addint partitions, continue with setup)

(done adding partitions, continue with setup)
(done adding partitions, continue with setup)

OEBPS/Images/slackbook_setup-swap.png
SWAP SPACE DETECTED

Slackware Setup has detected one or more swap partitions
on your system. These partitions have been preselected
to be set up as swap space. If there are any swap
partitions that you do not wish to use with this

installation, please unselect them with the up and down
arrows and spacebar. if you wish to use all of them

(this is recommend), simply hit the ENTER key.

[X] /dev/sda2 Linux swap partition, 1060290KB

OEBPS/Images/slackbook_make-menuconfig-w.png
Linux Kernel vZ.6.11.6 Configuration

Arrou keys navigate the menu. <Enter> selects submenus ——->
Highlighted letters are hotkeys. Pressing <¥> includes, <N> excludes.
<M> modularizes features. Press <Esc<Escy to exit, <?> for Help, </>
for Search. Legend: [x1 built-in [1 excluded <M> module < >

{___Code maturity level options)]
eneral setup —>
oadable module support ——>
rocessor type and features ——>
ouer managenent options (ACPI, APH) ——>
us options (PCI, PCHCIA, EISA, MCA, ISA)
xecutable file formats —>
evice Drivers
ile systens -
rofiling support
ernel hacking —

OEBPS/Images/slackbook_pkgtool.png
Slackware Package Tool (pkgtool version 14.0)
Welcome to the Slackware package tool.
Which option would you like?

Install packages from the current directory
Install packages from some other directory
Install packages from floppy disks

Remove packages that are currently installed
View the list of files contained in a package

Choose Slackware installation scripts to run again

OEBPS/Images/slackbook_sb_16-3_2_mutt.jpg
g:Quit d:Del u:Undel

s:Save m:Mail r:Reply g:Group ?:Help

5424 Aug 19 slakmagik (3.9K) Re: [Slackbuilds-users] rc2 sla
5425 Aug 19 LukenShiro (3.0K) Re: [Slackbuilds-users) eric iddq
5426 Aug 19 B Watson (3.8K) Re: [Slackbuilds-users) eric id
5427 Aug 19 Marcin Herda (7.2K) Re: [Slackbuilds-users] i3 updal
5429 Aug 19 Binh Nguyen (26K) [Slackbuilds-users] My SlackBui
5430 Aug 20 rudscnalves (77K) Re: [Slackbuilds-users) eric id
5432 Aug 21 Nicolas Kovacs