
2024/04/26 16:11 (UTC) 1/17 Helper script for managing QEMU virtual machines

SlackDocs - https://docs.slackware.com/

Helper script for managing QEMU virtual
machines

Preface

Qemu is a popular and powerful open-source emulator often used for running KVM Virtual Machines
(VMs). In fact qemu supports emulating so many things that it can be quite challenging, unless you do
it very often, to manually start a VM from a text console. Who would want to write the below
command for starting a VM ?

qemu-system-arm -name armedslack -M versatilepb -m 256 -k en-us -vnc
:5,password -usb -kernel /VM/armedslack/zImage-versatile -initrd
/VM/armedslack/initrd-versatile -append 'root=/dev/sda1 rootfs=ext2' -
monitor telnet:127.0.0.1:1035,server,nowait -drive
file=/VM/armedslack/qemu_hdu.raw,index=0,media=disk -drive
file=,index=1,media=cdrom -net nic,macaddr=52:54:57:c0:2c:bb -net
tap,ifname=tap5

Not everyone might want console redirect on vnc and monitor redirect via telnet but non the less
that's still a relatively small subset of the options supported by qemu-system-arm and only has one
disk one cdrom and one Network Interface Controller (NIC) so things can be much worse then this.

Is is common, for people running qemu VMs, to use some sort of software for creating, running and
maintain the VMs. If you want an easy way out you might consider virtmanager or something like
that. Personally I chose to manage my VMs from text console because for me it's an added value to
be able to do such jobs even without GUI, so possibly like many others I wrote my onw scripts for
managing my qemu VMs.

Over the years I've radically changed the helper script form having text configuration files for each
VM to a centarl VM configuration database. I'd like to share my experience in doing so without
presumptuously declaring that I do this any better then anyone else, letting you decide what's good
or bad for your needs. It's likely that someone else has done this and a lot better then me but
nevertheless I'd still like to hare with you the route I took.

Problems

Here are the problems that governed my choices:

ability to run both x86 and ARM virtual machines
ability to run several VMs simultaneously
have the VMs appear as a real server in the LAN
flexibility on the number of disks assigned to a VM
flexibility on the number of NICs assigned to a VM

Last
update:
2023/12/12
08:13
(UTC)

howtos:emulators:helper_script_for_managing_qemu_virtual_machines https://docs.slackware.com/howtos:emulators:helper_script_for_managing_qemu_virtual_machines

https://docs.slackware.com/ Printed on 2024/04/26 16:11 (UTC)

avoid conflicts on VM console vnc port
avoid conflicts on VM monitor port

Wanting the VMs to appear like real servers on the LAN, along with my other requirements, made me
opt for bridged tap NICs, which in turn created another potential conflict on the tap device ans MAC
address.

Using the initial, per VM text based configuration, started to make it difficult to deal with such issues
automatically (making the code unnecessarily long and complex) while manually creating a
configuration file for a new VM required looking for information across all previously configured VMs to
avoid potential conflicts.

Proposed Solution

It quickly became apparent to me that the VM configuration would need to be generated rather then
manually created and that a central configuration repository would much aid the process. Again a text
based central configuration file would make, either the code or the config file, inherently complicated
(having to deal with an arbitrary number of VMs each with arbitrary number of disks and NICs).
Having some experience on database administration made it a little unappealing to use LDAP for
central repository and even if I had no DB experience at all I doubt I'd actually want the overhead of
running LDAP just for this. Running MariaDB or Postgres was equally unappealing too for my small
requirements, so I chose to use sqlite3. In my case it would be extremely rare that, 2 or more
simultaneous executions of the management script, make a mess on the DB but if you have several
people managing creating or deleting VMs you might want to opt for MariaDB or Postgres.

Another thing that quickly became apparent was the almost repetitive code required to prompt for all
the options so I decided to address that in 2 ways:

have as much of the promoting automatically generated with a clever workaround1.
use dialog to further simplify the UI for prompting2.

Basic Configuration

To get better flexibility for configuring where things are stored it's a good idea to have a basic
configuration file that tells the management script where the important things are:

Path to folder that will contain all the VMs
Path to where the centralized VM configuration DB is
Path to where the ISO images are stored

I also find it handy to have ither parameters in the basic configuration:

MONITOR_START_PORT
SHUTDOWN_TIMEOUT (timeout for clean shutdown od a VM)
OS_RESERVED_MEM (how much memory is to be reserved for OS when prompting for how much
RAM is to be assigned to a VM)

2024/04/26 16:11 (UTC) 3/17 Helper script for managing QEMU virtual machines

SlackDocs - https://docs.slackware.com/

Here's an example of what the config file would look like:

VM_PATH='/VM'
VM_DB='/VM/vm.conf'
ISO_PATH='/ISO'
MONITOR_START_PORT='1030'
SHUTDOWN_TIMEOUT='300'
OS_RESERVED_MEM='512'

Getting the Management Script to Find the Basic Configuration

To make sure the management script can find this basic configuration no matter what I use a simple
workaround: have the basic config in the same place as the management script and call it the same
with “.conf” appended to it.

For example let's suppose the management script is /usr/local/bin/qemumgmt it's configuration file
would be /usr/local/bin/qemumgmt.conf thus inside the management script I can load the basic
configuration like this (or get the script to prompt for making one):

NAME=$(basename $0)
CWD=$(dirname $0)
[-r ${CWD}/${NAME}.conf] && source ${CWD}/${NAME}.conf || make_config

A smart Way to Produce Basic Configuration

Getting someone to use your script if it's difficult to configure is difficult so I opted for having the
script prompt the user for it's mandatory configuration options and automatically create the basic
configuration file if it's not there. I do this by using the make_config finction to which I refer th the
above paragraph and a variable that holds the mandatory parameter list (there are also 2 function for
manipulating input and generating a dialogs based on the input form_dialog and accept_dialog):

SCRIPT_PARAMS="VM_PATH VM_DB ISO_PATH MONITOR_START_PORT SHUTDOWN_TIMEOUT
OS_RESERVED_MEM"

form_dialog ()
{ TITLE=$1
 shift
 unset STRING
 MAX=0
 for A in $*
 do
 [$((${#A} +3)) -gt $MAX] && MAX=$((${#A} +3))
 done
 i=0
 for A in $*
 do
 STRING[$i]="${A}: $(($i + 1)) 1 \"$(eval echo "\$$A")\" $(($i + 1))
$MAX 40 0"

Last
update:
2023/12/12
08:13
(UTC)

howtos:emulators:helper_script_for_managing_qemu_virtual_machines https://docs.slackware.com/howtos:emulators:helper_script_for_managing_qemu_virtual_machines

https://docs.slackware.com/ Printed on 2024/04/26 16:11 (UTC)

 ((i++))
 done
 eval $(echo dialog --title \"$TITLE\" --separator \'\;\' --form \"\" 0 0 0
${STRING[*]} \2\>$DIALOG_OUTPUT)
}

accept_dialog ()
{ TITLE=$1
 shift
 unset STRING
 MAX=0
 for A in $*
 do
 [$((${#A} +3)) -gt $MAX] && MAX=$((${#A} +3))
 done
 i=0
 for A in $*
 do
 STRING[$i]="${A} = $(eval echo "\$$A") \n"
 ((i++))
 done
 eval $(echo dialog --title \"$TITLE\" --yesno \" ${STRING[*]}\" 0 0) &&
return 1 || return 0
}

make_config ()
{ ACCEPT=0
 while [$ACCEPT -eq 0]
 do
 form_dialog "Basic config for $NAME" $SCRIPT_PARAMS && IFS=';' read -r -
d '\;' $SCRIPT_PARAMS < $DIALOG_OUTPUT
 accept_dialog "Accept Configuration ?" $SCRIPT_PARAMS
 ACCEPT=$?
 done

 (for PARAM in $SCRIPT_PARAMS
 do
 echo "${PARAM}='$(eval echo "\$$PARAM")'"
 done
) > $CWD/${NAME}.conf
 chmod 600 $CWD/${NAME}.conf
 sleep 1
}

Isn't that nice? there's no specific code for each basic configuration option … everything is self
generated from the SCRIPT_PARAMS variable. If you need to add another basic configuration option
it's really fast … and as long as you give them names that speak for themselves it will also be easy to
give them values when prompted via dialog.

2024/04/26 16:11 (UTC) 5/17 Helper script for managing QEMU virtual machines

SlackDocs - https://docs.slackware.com/

This is what it would be like to get propted (with defaults) for the missing basic configuration:

 +-----------------Basic config for qemu_dialog-----------------
---+
 | +--
-+ |
 | |VM_PATH: /VM
| |
 | |VM_DB: /VM/vm.conf
| |
 | |ISO_PATH: /ISO
| |
 | |MONITOR_START_PORT: 1030
| |
 | |SHUTDOWN_TIMEOUT: 300
| |
 | |OS_RESERVED_MEM: 512
| |
 | +--
-+ |
 |
|
 +--
---+
 | < OK > <Cancel>
|
 +--
---+

Configuration Database

Having opted for a DB central configuration would require that all the items with arbitrary quantities
per VM be on a separate table that references a parent VM table. My issue was on having arbitrary
number of disks and NICs per VM, all the other stuff could be held in columns of a master VM table.
Let's have a look at the tables

Master VM Table

In this table you will need to have all the biunique features of each VM expressly leaving out all
features that do not have a one to one (VM ↔ feature) relationship. As mentioned before I want to
have the possibility that each VM has both several disks and NICs so these features will be in separate
tables for me. So the features that are required and biunique to each VM in my needs are:

Name
System Emulator
Machine Type
CPU
RAM

Last
update:
2023/12/12
08:13
(UTC)

howtos:emulators:helper_script_for_managing_qemu_virtual_machines https://docs.slackware.com/howtos:emulators:helper_script_for_managing_qemu_virtual_machines

https://docs.slackware.com/ Printed on 2024/04/26 16:11 (UTC)

Keyboard Layout
Bios
Boot Order
Flag for KVM support
Display (in case console is to be redirected)
VNC Password
Flag for USB
Kernel Image
Initrd Image
Append Parameters for Kernel

Naturally to that we need to add a key for referencing the non biunique features of each VM. Here's
the sql syntax for creating my VM master table (in sqlite3 dialect):

create table if not exists virtual_machines
(vm_id integer primary key autoincrement,
 vm_name text unique not null,
 vm_emulator text not null,
 vm_machine text not null,
 vm_cpu text not null,
 vm_mem integer not null,
 vm_kb text not null,
 vm_bios text,
 vm_boot_order text,
 vm_kvm intger not null,
 vm_display text,
 vm_vnc_pw text,
 vm_usb integer not null,
 vm_kernel text,
 vm_initrd text,
 vm_append text
);

Disks Table

This table will need to hold a column that ties (references) which VM owns the disk along with the
infomation required to identify the disk:

Media Type (disk or cdrom)
Media File (where the disk image file is located on the host machine)
Status Flag (allow the VM to boot without the cdrom for example)

Here's the sql in sqlite3 dialect:

CREATE TABLE disks
(d_id integer primary key autoincrement,
 d_vm_id integer references virtual_machines(vm_id) on update
cascade,

2024/04/26 16:11 (UTC) 7/17 Helper script for managing QEMU virtual machines

SlackDocs - https://docs.slackware.com/

 d_media text not null,
 d_file text not null,
 d_status integer not null
);

NICs Table

Like the disks table this also needs to have a column that references the VM that owns the NIC along
with the other information required to identify the NIC itself: ID (used to have unique tap devices)
MAC Address

Here's the sql in sqlite3 dialect:

CREATE TABLE nics
(n_id integer primary key autoincrement,
 n_vm_id integer references virtual_machines(vm_id) on update
cascade,
 n_mac text not null
);

Real Data

Here's what the data inside my configuration database looks like:

sqlite> select * from virtual_machines;
1|ORACLE|qemu-system-i386|pc|kvm32|1024|en-
us|file=/usr/share/qemu/bios.bin|c|1|vnc|ciccio|1|||
2|test|qemu-system-i386|pc|kvm32|1024|en-
us|file=/usr/share/qemu/bios.bin|c|1|vnc|ciccio|1|||
3|ORACLE2|qemu-system-i386|pc|kvm32|1024|en-
us|file=/usr/share/qemu/bios.bin|c|1|vnc|ciccio|1|||
4|freenas|qemu-system-x86_64|pc|host|3000|en-
us|file=/usr/share/qemu/bios.bin|c|1|vnc|pafutometu|1|||
5|armedslack|qemu-system-arm|versatilepb||256|en-
us|||0|vnc|cicciobello|1|/VM/armedslack/zImage-
versatile|/VM/armedslack/initrd-versatile|root=/dev/sda1 rootfs=ext2
sqlite> select * from disks;
1|1|disk|/VM/ORACLE/disk0.qcow2|1
2|1|cdrom|/ISO/OL6.6-x86.iso|1
3|2|disk|/VM/test/disk0.qcow2|1
4|2|cdrom|/ISO/OL6.6-x86.iso|1
5|1|disk|/VM/ORACLE/disk1.qcow2|1
6|3|disk|/VM/ORACLE2/disk0.qcow2|1
7|3|cdrom|/ISO/OL6.6-x86.iso|1
8|4|disk|/VM/freenas/disk0.qcow2|1
9|4|disk|/VM/freenas/disk1.qcow2|1
10|5|disk|/VM/armedslack/qemu_hdu.raw|1
11|5|cdrom||1

Last
update:
2023/12/12
08:13
(UTC)

howtos:emulators:helper_script_for_managing_qemu_virtual_machines https://docs.slackware.com/howtos:emulators:helper_script_for_managing_qemu_virtual_machines

https://docs.slackware.com/ Printed on 2024/04/26 16:11 (UTC)

sqlite> select * from nics;
1|1|52:54:54:e7:30:88
2|2|52:54:54:ec:97:85
3|3|52:54:54:f6:cd:f9
4|4|52:54:57:be:b5:2e
5|5|52:54:57:c0:2c:bb
sqlite>

There is however a problem with using foreign keys with sqlite3, sometimes when you delete rows
and the referenced rows in the PARENT table, the internal sqlite_sequence table can enter an
inconsistent state inhibiting any further insertions on the child tables. This can be worked around by
careful handling of both the tables and the internal sqlite_sequence table.

A Smart Way to Input Data For New VM

As mentioned above, getting bugged with all the details required for configuring a new VM can be a a
killer unless you do it really often so here's how I go about it in a similar fashion to creating the basic
configuration. The idea is to reduce the amount of code written specifically to each VM option allowing
for a relatively slender script and ease to add new VM options if required.

Unfortunately here things are a little more complicated because different qemu-system-* produce
slightly different output when prompted with help and because most of the VM options require a
separate dialog asking for some specific action nonetheless a lot of the code required is self
generated from the PARAMS variable. The only specific code is to work around the differences
between the various qemu-system-* emulators.

PARAMS="EMULATOR MACHINE CPU MEM KEYBOARD DISK DISKSIZE CDROM BIOS
BOOT_ORDER KVM DISPLAY VNCPW USB KERNEL INITRD APPEND MAC"

create_vm ()
{ if [$# -lt 1]
 then
 while ["$VM_NAME" = ""]
 do
 dialog --inputbox "Choose Virtual Machine Name
N.B. The following names are already in use
$(list_vm_names)
" 0 0 2>$DIALOG_OUTPUT
 VM_NAME=$(< $DIALOG_OUTPUT)
 done
 else
 VM_NAME=$1
 fi
 get_vm_id $VM_NAME
 VM_ID=$?
 while [$VM_ID -ne 0]
 do
 dialog --inputbox "$VM_NAME is already in use, pick another one

2024/04/26 16:11 (UTC) 9/17 Helper script for managing QEMU virtual machines

SlackDocs - https://docs.slackware.com/

N.B. The following names are already in use
$(list_vm_names)
" 0 0 2>$DIALOG_OUTPUT
 VM_NAME=$(< $DIALOG_OUTPUT)
 get_vm_id $VM_NAME
 VM_ID=$?
 done

 radiobox_dialog "Choose the type of system to be emulated" $(find
${PATH//:/ } -type f -executable -name "qemu-system-*" -printf "%f ")
 EMULATOR=$(< $DIALOG_OUTPUT)
 case $EMULATOR in
 qemu-system-i*86|qemu-system-x86_64)
 MACHINE=pc
 grep -qwE "vmx|svm" /proc/cpuinfo && KVM=1 || KVM=0
 [$KVM -eq 1] && CPU=host || CPU=pentium3
 BIOS="file=/usr/share/qemu/bios.bin"
 BOOT_ORDER="c"
 ;;
 qemu-system-arm)
 KVM=0
 choose_machine $EMULATOR
 MACHINE=$(< $DIALOG_OUTPUT)
 choose_arm_cpu $MACHINE
 CPU=$(< $DIALOG_OUTPUT)
 ;;
 *) echo "unsupported yet" ; exit 1 ;;
 esac

 choose_mem_size
 MEM=$(< $DIALOG_OUTPUT)
 choose_keyboard
 KEYBOARD=$(< $DIALOG_OUTPUT)
 KEYBOARD=${KEYBOARD:-"en-us"}
 choose_iso
 CDROM=$(< $DIALOG_OUTPUT)
 choose_file $VM_PATH/$VM_NAME "Choose VM kernel"
 KERNEL=$(< $DIALOG_OUTPUT)
 if ["$KERNEL" != ""]
 then
 choose_file $VM_PATH/$VM_NAME "Choose VM initrd"
 INITRD=$(< $DIALOG_OUTPUT)
 choose_append
 APPEND=$(< $DIALOG_OUTPUT)
 unset BIOS
 unset BOOT_ORDER
 fi

 choose_file $VM_PATH/$VM_NAME "Choose VM disk (cancel for default)"
 DISK=$(< $DIALOG_OUTPUT)
 if ["$DISK" = ""]

Last
update:
2023/12/12
08:13
(UTC)

howtos:emulators:helper_script_for_managing_qemu_virtual_machines https://docs.slackware.com/howtos:emulators:helper_script_for_managing_qemu_virtual_machines

https://docs.slackware.com/ Printed on 2024/04/26 16:11 (UTC)

 then
 DISK="$VM_PATH/$VM_NAME/disk0.qcow2"
 dialog --inputbox "Choose VM disk image size " 0 0 20G 2>$DIALOG_OUTPUT
 DISKSIZE=$(< $DIALOG_OUTPUT)
 fi

 dialog --inputbox "Type VNC password for this VM" 0 0 cicciobello
2>$DIALOG_OUTPUT
 VNCPW=$(< $DIALOG_OUTPUT)

 DISPLAY=vnc
 USB=1
 MAC="52:54:$(date +%s |awk '{printf("%x",($1 / 16777216)%256)}'):$(date
+%s |awk '{printf("%x",($1 / 65536)%256)}'):$(date +%s |awk
'{printf("%x",($1 / 256)%256)}'):$(date +%s |awk '{printf("%x",$1 % 256)}')"

 ACCEPT=0
 while [$ACCEPT -eq 0]
 do
 form_dialog "Configuration for $VM_NAME VM" $PARAMS && IFS=';' read -r -
d '\;' $PARAMS < $DIALOG_OUTPUT
 accept_dialog "Accept $VM_NAME configuration ?" $PARAMS
 ACCEPT=$?
 done

 NEW_VM_ID=$(($(count_configured_vms) + 1))
 echo -e "PRAGMA foreign_keys = ON;
insert into virtual_machines values
(null,'$VM_NAME','$EMULATOR','$MACHINE','$CPU',$MEM,'$KEYBOARD','$BIOS','$BO
OT_ORDER',$KVM,'$DISPLAY','$VNCPW',$USB,'$KERNEL','$INITRD','$APPEND');
insert into disks values (null,$NEW_VM_ID,'disk','$DISK',1);
insert into disks values (null,$NEW_VM_ID,'cdrom','$CDROM',1);
insert into nics values (null,$NEW_VM_ID,'$MAC');" |sqlite3 $VM_DB
[! -d $(dirname $DISK)] && mkdir -p $(dirname $DISK)
[! -f $DISK] && qemu-img create -f qcow2 -o preallocation=metadata $DISK
$DISKSIZE >/dev/null 2>&1
}

Networking

As mentioned above I want my VMs to look like real machines on the LAN the host server is connected
on, this will require bridging the tap devices. Newer versions of qemu can automatically create and
use tap device but I it will not do bridging and besides that it you need to tell it which tap device
anyway. If you intend to run several VMs at once that all look like real servers on the LAN you will
need to write qemu-ifup and qemu-ifdown scripts in /etc to deal with that.

I like to write a single script qemu-nethelper and have qemu-ifup and qemu-ifdown linked to it. The
qemu-system-* emulators all execute /etc/qemu-ifup when bringing up a VM with a tap device, with

2024/04/26 16:11 (UTC) 11/17 Helper script for managing QEMU virtual machines

SlackDocs - https://docs.slackware.com/

the tap device parameter, and similarly execute /etc/qemu-ifdown when taking down a VM with a tap
device.

As mentioned above newer versions of qemu (I think 1.1+) automatically create the tap device so the
qemu-nethelper only needs to do the bridging. Now to make things a lot easier I like to have the host
on which I run VMs with br0 configured at boot and then the qemu-nethelper only needs to add the
tap device to the bridge, making it extremely simple. If br0 is already configured at boot then you
need not restart any iptables so long as the chains use the bridge devices and the kernel has support
for ebtables.

#!/bin/bash
NAME=$(basename $0)
tun_up ()
{ /sbin/ifconfig $1 0.0.0.0 promisc up
 /usr/bin/sleep 0.5
 /sbin/brctl addif br0 $1
}

tun_down ()
{ /sbin/ifconfig $1 down
 /usr/bin/sleep 0.5
 /sbin/brctl delif br0 $1
}

case $NAME in
 qemu-ifup) tun_up $1;;
 qemu-ifdown) tun_down $1;;
 *) echo fail; exit 1;;
esac

Using Qemu from Unprivileged Users

Using root for doing your everyday tasks is commonly discouraged so let's see how we can work
around using qemu from unprivileged users. Some say that it's sufficient to give sudo execution on
/etc/qemi-if* but that not really enough because qemu-system-* needs to run as root or it will not be
able to create the taps and access other resources. Although it is technically possible to give an
unprivileged user sufficient privileges to execute correctly qemu-system-* emulators it is much easier
to give users the sudo right to run qemu-system-* as privileged user.

User_Alias QEMUERS = al, john, jack

Cmnd_Alias QEMUCMD = /usr/bin/qemu-system-*

QEMUERS ALL=(ALL) NOPASSWD: QEMU

This would be sufficient to run the VMs as any of the unprivileged users in QEMUERS user alias (al,
john, jack) but the management script would need to run sudo qemu-system-* …. this is easy to
obtain:

Last
update:
2023/12/12
08:13
(UTC)

howtos:emulators:helper_script_for_managing_qemu_virtual_machines https://docs.slackware.com/howtos:emulators:helper_script_for_managing_qemu_virtual_machines

https://docs.slackware.com/ Printed on 2024/04/26 16:11 (UTC)

[$(/usr/bin/id -u) -ne 0] && CMD="sudo qemu-system-.... " || CMD="qemu-
system-...."
eval $(echo "$CMD &")

Alternatively you could give privileges to execute the management script as root.

Examples

Here are examples of the dialogs that user would see wile creating, starting, stopping and deleting a
VM. q

VM Creation Example

+---+
| Choose Virtual Machine Name |
| N.B. The following names are already in use |
| ORACLE |
| ORACLE2 |
| armedslack |
| freenas |
| test |
| +---+ |
| | test2 | |
| +---+ |
+---+
| < OK > <Cancel> |
+---+

+-------------------------------+
| Choose the type of system to |
| be emulated |
| +---------------------------+ |
	(*) qemu-system-x86_64 1	
	() qemu-system-arm 2	
	() qemu-system-i386 3	
+---------------------------+		
+-------------------------------+		
< OK > <Cancel>		
+-------------------------------+

+-------------------------------+
| Choose VM memory size in Mb |
| (max 3421 Mb) |
| +---------------------------+ |
| |1024 | |
| +---------------------------+ |

2024/04/26 16:11 (UTC) 13/17 Helper script for managing QEMU virtual machines

SlackDocs - https://docs.slackware.com/

+-------------------------------+
| < OK > <Cancel> |
+-------------------------------+

+------------------------------+
| Choose VM Keyboard layout |
| (cancel for default en-us) |
| +--------------------------+ |
	(*) ar 1	
	() de-ch 2	
	() es 3	
	() fo 4	
	() fr-ca 5	
	() hu 6	
	() ja 7	
	() mk 8	
	() no 9	
	() pt-br 10	
	() sv 11	
	() da 12	
	() en-gb 13	
	() et 14	
	() fr 15	
	() fr-ch 16	
	() is 17	
	() lt 18	
	() nl 19	
	() pl 20	
	() ru 21	
	() th 22	
	() de 23	
	() en-us 24	
	() fi 25	
	() fr-be 26	
	() hr 27	
	() it 28	
	() lv 29	
	() nl-be 30	
	() pt 31	
	() sl 32	
	() t 33	
+--------------------------+		
+------------------------------+		
< OK > <Cancel>		
+------------------------------+

+---+
| Choose installation image (Cancel for none) |
| +---+ |
| | (*) /ISO/CentOS-6.6-i386-bin-DVD1.iso 1 | |
| | () /ISO/Fedora-Server-DVD-i386-21.iso 2 | |

Last
update:
2023/12/12
08:13
(UTC)

howtos:emulators:helper_script_for_managing_qemu_virtual_machines https://docs.slackware.com/howtos:emulators:helper_script_for_managing_qemu_virtual_machines

https://docs.slackware.com/ Printed on 2024/04/26 16:11 (UTC)

	() /ISO/FreeNAS-9.10.1.iso 3	
	() /ISO/OL6.6-x86.iso 4	
	() /ISO/rhel-server-6.6-i386-dvd.iso 5	
+---+		
+---+		
< OK > <Cancel>		
+---+

+----------------------------+
| Choose VM kernel |
| +------------------------+ |
| | | |
| +------------------------+ |
+----------------------------+
| < OK > <Cancel> |
+----------------------------+

+----------------------------+
| Choose VM disk (cancel for |
| default) |
| +------------------------+ |
| | | |
| +------------------------+ |
+----------------------------+
| < OK > <Cancel> |
+----------------------------+

+----------------------------+
| Choose VM disk image size |
| +------------------------+ |
| |2G | |
| +------------------------+ |
| |
+----------------------------+
| < OK > <Cancel> |
+----------------------------+

+----------------------------+
| Type VNC password for this |
| VM |
| +------------------------+ |
| |pleasechangethis | |
| +------------------------+ |
+----------------------------+
| < OK > <Cancel> |
+----------------------------+

+--------------Configuration for test2 VM-----------------+
| +---+ |

2024/04/26 16:11 (UTC) 15/17 Helper script for managing QEMU virtual machines

SlackDocs - https://docs.slackware.com/

	EMULATOR: qemu-system-x86_64	
	MACHINE: pc	
	CPU: host	
	MEM: 1024	
	KEYBOARD: en-us	
	DISK: /VM/test2/disk0.qcow2	
	DISKSIZE: 2G	
	CDROM: /ISO/CentOS-6.6-i386-bin-DVD1.iso	
	BIOS: file=/usr/share/qemu/bios.bin	
	BOOT_ORDER: c	
	KVM: 1	
	DISPLAY: vnc	
	VNCPW: oleasechangethis	
	USB: 1	
	KERNEL:	
	INITRD:	
	APPEND:	
	MAC: 52:54:57:c6:cc:21	
+---+		
+---+		
< OK > <Cancel>		
+---+

Starting and Stopping VM Examples

+----------------------------+
| Choose Virtual Machine |
| +------------------------+ |
	() ORACLE 1	
	() ORACLE2 2	
	() armedslack 3	
	() freenas 4	
	() test 5	
	(*) test2 6	
+------------------------+		
+----------------------------+		
< OK > <Cancel>		
+----------------------------+

After the command for starting the VM is executed 2 more things take place:

a quickstart.sh script (containing the required commands to start the VM) is created in the VM1.
folder
the qemu-system-* command to start the VM is echoed back on the console2.

Stopping a virtual machine has the same dialog.

Last
update:
2023/12/12
08:13
(UTC)

howtos:emulators:helper_script_for_managing_qemu_virtual_machines https://docs.slackware.com/howtos:emulators:helper_script_for_managing_qemu_virtual_machines

https://docs.slackware.com/ Printed on 2024/04/26 16:11 (UTC)

VM Delete Example

+----------------------------+
| Choose Virtual Machine |
| +------------------------+ |
	() ORACLE 1	
	() ORACLE2 2	
	() armedslack 3	
	() freenas 4	
	() test 5	
	(*) test2 6	
+------------------------+		
+----------------------------+		
< OK > <Cancel>		
+----------------------------+

+-------Do you want to delete VM test2 ?---------+
| This will remove VM test2 with id:6 from the |
| configuration. The folder containing the VM |
| and the quiskstart.sh script will need to be |
| manually removed. |
| Do you wish to proceed ? |
+--+
| < Yes > < No > |
+--+

+------NOTICE---------+
| Folder containing |
| VM needs to be |
| manually removed. |
+---------------------+

You may be asking: “what is the quinskstart.sh script ?” Well each time the management script is
used to start a VM it creates a quinskstart.sh (containing the required commands to start the VM) in
the VM folder so that if the config database ever gets irreparably corrupt you can still start the VM
with the quinskstart.sh.

Sources

I've a blog entry on LQ where I talk a little more extensively on minimizing the code in bash scripts.
Minimize the amount of code in your bash scripts

* Originally written by louigi600

howtos, louigi600

http://www.linuxquestions.org/questions/blog/louigi600-808242/minimize-the-amount-of-code-in-your-bash-scripts-37137/
https://docs.slackware.com/wiki:user:louigi600
https://docs.slackware.com/tag:howtos
https://docs.slackware.com/tag:louigi600?do=showtag&tag=louigi600

2024/04/26 16:11 (UTC) 17/17 Helper script for managing QEMU virtual machines

SlackDocs - https://docs.slackware.com/

From:
https://docs.slackware.com/ - SlackDocs

Permanent link:
https://docs.slackware.com/howtos:emulators:helper_script_for_managing_qemu_virtual_machines

Last update: 2023/12/12 08:13 (UTC)

https://docs.slackware.com/
https://docs.slackware.com/howtos:emulators:helper_script_for_managing_qemu_virtual_machines

	Helper script for managing QEMU virtual machines
	Preface

	Problems
	Proposed Solution
	Basic Configuration
	Getting the Management Script to Find the Basic Configuration
	A smart Way to Produce Basic Configuration

	Configuration Database
	Master VM Table
	Disks Table
	NICs Table
	Real Data
	A Smart Way to Input Data For New VM

	Networking
	Using Qemu from Unprivileged Users
	Examples
	VM Creation Example
	Starting and Stopping VM Examples
	VM Delete Example

	Sources

